Hector is a new optical integral field spectrograph (IFS) instrument built by Astralis - Australia’s Astronomical Instrumentation Consortium. Hector was commissioned on the Anglo-Australian Telescope (AAT) in 2022. In 2023 it began a 15,000-galaxy IFS survey of nearby z< 0.1 galaxies. The high fill-factor imaging fibre bundles ‘hexabundles’ of the type used on the SAMI instrument, have been improved and enlarged to cover up to 27-arcsec diameter. The aim is to reach 2 effective radii on most galaxies. Hector has a unique and novel robotic positioner that compensates for varying telecentricity over the 2-degree-field of the AAT to recoup the light loss and correct the focus across the field. Hector has 21 hexabundles over that 2-degree field feeding both the new Hector spectrograph (Spector) and existing AAOmega spectrograph. The new dual-arm Spector spectrograph has the highest spectral resolution of any large IFS nearby galaxy survey of 1.3 Angstrom. This is key to enable higher order stellar kinematics to be measured on a larger fraction of galaxies and to link those galaxies to the large-scale environments in which they form. A data reduction pipeline has been developed and is producing science-quality galaxy cubes and the first internal data release is now being used for science.
We describe the Sloan Digital Sky Survey Local Volume Mapper Instrument (LVM-I) construction, testing, and initial performance. The facility is designed to produce the first integral map of thousands of degrees of the Southern sky. The map will cover spectra from bluer than [O II] to 980 nm with a dispersion of over R = Δλ/λ > 4, 000 at Hα wavelength. Each spaxel will have a pitch of ∼35′′, and the survey will be conducted using four integral field units (IFUs) with an instantaneous field of view of 530 arcmin2. The LVM facility is designed to achieve the required sub-Rayleigh spectroscopy over large sky areas with outstanding spectrophotometric accuracy and precision. LVM-I is designed to produce this unique dataset using four siderostats on commercial mounts. The four beams are fed into 16-cm-diameter f/11.4 apochromatic objectives, and the sky is derotated with K mirrors. These telescopes produce an image of the field onto both guider cameras and a lenslet array. The array reimages the field at f/3.7 onto 107-micron-diameter fibers. Blue throughput is maximized with a short 18.5-m fiber run from the IFUs to the spectrographs. The fibers are reconfigured inside a splicing box to distribute the fibers from the four telescopes to three spectrographs. The spectrographs are near-copies of the Dark Energy Survey three-band f/1.7 spectrographs, which deliver sharp images over the entire chromatic range. Nine STA charge-coupled devices (CCDs), cooled with liquid-nitrogen dewars, are used for the survey. The LVM-I is controlled with custom Python software and distributed over various computers using power-over-ethernet networking. The system is housed in a custom enclosure with a roll-off roof to grant access to the sky. The enclosure allows all four telescopes to point all over the sky and measure the transmissivity of the atmosphere and the sky background. Some of the first-light data products are highlighted here.
The Australian Astronomical Observatory’s (AAO’s) AESOP project is part of the Multi-Object Spectrograph Telescope (4MOST) system for the VISTA telescope. It includes the 2436-fibre positioner, space frame and electronics enclosures. The AESOP concept and the role of the AAO in the 4MOST project have been described in previous SPIE proceedings. The project final assembly stage has recently been completed. In this paper, key results in accurate manufacturing and assembly of critical AESOP components are discussed. The major performance requirement for AESOP is that all 2436 science fibre cores and 12 guide fibre bundles are to be re-positioned to an accuracy of 10 micron within 1 minute. With a fast prime-focus focal-ratio, a close tolerance of +/-70 microns on the axial position of the fibre tips must be held so efficiency does not suffer from de-focus losses. Positioning accuracy is controlled with the metrology cameras installed on the telescope, which measures the positions of the fibre tips to an accuracy of a few micrometers and allows iterative positioning until all fibre tips are within tolerance on the ultimate position. Maintaining co-planarity of the fibre tips requires accurate control in the assembly of several components that contribute to such errors. Overall, the AESOP design fully complies with all its requirements and in most cases achieves its goals. A thorough consideration of all the relevant interfaces during the design and assembly phases, has resulted in comprehensive set of ICDs for the mechanical, electrical and software aspects of AESOP.
The Fibre-Optic Broadband Spectrograph (FOBOS) is a facility-class multi-object spectrograph currently being designed, and to be deployed to the Keck II telescope. FOBOS is able to simultaneously observe 1729-objects across a 20′ field of view, with 30% instrument throughput from 0.31-1.0 µm and a spectral resolution of R<3500 delivered by three, bench-mounted 4-channel spectrographs. The FOBOS focal plane will be configured using 1729 ‘Starbug’ robots, which are vacuum-adhered piezo actuators that ‘walk’ across the field plate to position fibres. Using Starbugs to position fibres allows fast configuration and flexibility in payloads, with a mixture of Single Fibre, IFUs, and Imaging Bundles (used for guiding) capable of being rapidly positioned across the field. The FOBOS team have recently passed their conceptual design review. The FOBOS positioner design builds on the experience gained from the TAIPAN instrument, which used 150 Starbugs and demonstrated their viability as a science instrument. In this paper we detail the conceptual design of the FOBOS focal positioner system. This includes details of the Starbug design, optomechanics, and optical designs that allow the focal plane positioner to operate. The FOBOS focal positioner design builds on the experience gained from TAIPAN, a prototype instrument built to demonstrate the Starbugs technology
The TAIPAN instrument is installed on the UK Schmidt Telescope and has undergone 5 years of commissioning and verification. It utilizes the Starbug fibre positioning technology and is a proof-of-concept design for future Starbug-based instrumentation. The installation and commissioning of this new technology has provided opportunities to understand the Starbugs in detail. Science verification began in 2021 and has demonstrated the sub-10 minute configuration time, efficiency of small field ‘tweaks’ to correct for atmospheric refraction, and positioning accuracy of the Starbugs. Lessons learned from the commissioning of TAIPAN will directly impact future projects in which the Starbug technology is proposed, such as MANIFEST and FOBOS.
The Australian Astronomical Observatory’s (AAO’s) AESOP project is part of the Multi-Object Spectrograph Telescope (4MOST) system for the VISTA telescope. It includes the 2436-fibre positioner, space frame and electronics enclosures. The AESOP concept and the role of the AAO in the 4MOST project have been described in previous SPIE proceedings. The project final assembly stage has been completed. In this paper, engineering principles applied during assembly of critical components and testing of the instrument are discussed. The major performance requirement for AESOP is that all 2436 science fiber cores and 12 guide fiber bundles are to be re-positioned to an accuracy of 10 micron within 1 minute. With a fast prime-focus focal-ratio, a close tolerance on the axial position of the fiber tips must be held so efficiency does not suffer from de-focus losses. Positioning accuracy is controlled with the metrology cameras installed on the telescope, which measures the positions of the fiber tips to an accuracy of a few micrometers and allows iterative positioning until all fiber tips are within tolerance on the focal surface plane. Maintaining co-planarity of the fiber tips requires accurate control in the assembly of several components that contribute to such errors. AESOP requires a consistent production of high accuracy components and assemblies in a quantity of above 2500 items. To achieve this, we had to apply the highest engineering standards, including assembly procedures, metrology, and control systems. We designed many jigs and fixtures, which enabled us to produce high quality components and assemblies at reasonable cost. The results – working instrument was vastly achieved with the help of university students after providing a training in engineering practices.
Hector is a multi-integral-field-unit instrument for the Anglo-Australian Telescope (AAT). It simultaneously feeds two spectrographs, the existing AAOmega spectrograph and the new higher-resolution Spector spectrograph. Both are fed with new generation hexabundles. Spector has an all refractive 2- arm design which delivers 1.3A fixed resolution across the full wavelength range has higher resolution in the blue end and R=5000 in the red which makes Spector uniquely powerful spectrograph. The mechanical assembly of the spectrograph is designed to provide specific solutions to the tight spacing between component assemblies with strict tolerance constraints which makes Spector an interesting challenging instrument. The components start with a custom slit assembly providing precise positioning of 855 fibres which forms the interface point for light injection to the spectrograph. This paper presents a detail overview of opto-mechanical component design of Spector spectrograph along with technical specifications. Component fabrication, assembly, testing alignment was completed by early 2021 and received first light in December 2021.
The Hector instrument was installed at the Anglo-Australian Telescope in December 2021 and received the first light. It consists of three major subsystems, namely, the positioner, spectrograph and optical cable. Spector is the new spectrograph with an average spectral resolution of R=4500 designed for hexabundles, the fiber integral field units. Details of the integration and testing of the spectrograph optics are presented here. Each assembled subsystem was interferometrically checked for wavefront quality. The system spectral performance was fine tuned using a test fiber slit to achieve required resolution across the field of view. The absolute transmittance of the spectrograph bulk optics was measured in both blue and red channels.
We present the work on applying Model-Based Systems Engineering (MBSE) to the conceptual design of the MANIFEST multi-object fiber positioner for the Giant Magellan Telescope (GMT). We use MBSE early in the system lifecycle to help identify and document the MANIFEST system characteristics. The application of MBSE allows the discovery of potential problems and their solutions. In addition, the MBSE facilitates managing complexity, reducing technical risk, and performing risk analyses. First, we report the benefits of the modeling process in capturing the problem domain model and stakeholder needs. Then, present the model framework, systems modeling language, and software tool to accomplish our goals for MANIFEST. Next, we report on the MANIFEST architectural products, the structural and functional elements, associated mappings, and relationships, including the interfaces between subsystems and external systems. Then we discuss the model presentation and report generation to communicate design aspects to stakeholders. Finally, we conclude with remarks about the effectiveness of the MBSE approach for the MANIFEST conceptual design.
KEYWORDS: Prototyping, Interfaces, Telescopes, Structured optical fibers, Green fluorescent protein, Systems engineering, Glasses, Electronics, Manufacturing, Control systems design
Appropriate project costing for astronomy instrumentation in early phases is pivotal to support the process of acquiring suitable funding. It also sustains the effective project cost management and increases the chances of project success. The absence of a clear method to project costing in the industry might lead projects to be undertaken at below cost at the risk of compromising quality and performance, eventually resulting in onerous cost overruns, and in worst cases, in failure and loss of reputation. This paper explores the use of techniques from the Project Management Body of Knowledge PMBOK applied to the cost estimate from conceptual design through to completion of one of instruments proposed for the Giant Magellan Telescope: MANIFEST, a robotic multi-fibre positioner that enhances the capabilities of other instruments in the telescope and enables the use of the telescope’s full field of view. Whilst the accuracy of the cost estimate results cannot be asserted until the project reaches more maturity, the MANIFEST cost estimate has proven to be a useful tool for cost control, more efficient resource allocation and forecast, and decision enabling during the MANIFEST Conceptual Design Phase 1. The cost basis of estimate used establishes the starting point to measure the project costing efficacy and the baseline required for the future program costing updates.
Based on the success of the SAMI integral field spectrograph (IFS) instrument on the Anglo-Australian Telescope (AAT), the capacity for large IFS nearby galaxy surveys on the AAT is being substantially expanded with a new instrument, Hector. The high fill-factor imaging fibre bundles ‘hexabundles’, of the type used on SAMI, are being improved and enlarged to cover 27-arcsec diameter. The aim is to reach 2 effective radii on most galaxies, where the galaxy rotation curve flattens and half of the angular momentum is accounted for. The boosted Hector spectral resolution of 1.3 Angstrom will enable higher order stellar kinematics to be measured on a larger fraction of galaxies than with any other IFS survey instrument. Hector will have 21 hexabundles over a 2-degree field feeding both the new Hector spectrograph and existing AAOmega spectrograph. Hector consists of new blue and red-arm spectrographs, coupled to the new high- efficiency hexabundles and a unique robotic positioner. The novel robotic positioning concept will compensate for varying telecentricity over the 2-degree-field of the AAT to recoup the light loss and correct the focus across the field. The main components are in hand, and prototypes are currently being tested ahead of commissioning in the next year. Hector will take integral field spectroscopy of 15,000 galaxies with z < 0.1 in the 4MOST WAVES-North and WAVES-South regions. The WAVES data, which will come later, will give the environment metrics necessary to relate how local and global environments influence galaxy growth through gas accretion, star formation and spins measured with Hector. The WALLABY ASKAP survey will trace HI gas across the Hector fields, which in combination with Hector will give a complete view of gas accretion and star formation.
Hector is a new generation multi-object Integral Field Spectroscopy (IFS) instrument that will utilise high- performance fibre integral field units called ‘hexabundles’. We will present the performance of the hexabundles based on the focal ratio degradation (FRD) and throughput results. Hector is planned to be using these hex- abundles on-sky by early 2021 to carry out one of the world largest IFS galaxy surveys at the Anglo-Australian Telescope (AAT). Hexabundles are developed in the AAO-USydney labs at the University of Sydney. They con- tain 37 to 169 multi-mode fibres per device and cover up to 26 arcseconds across each galaxy with a spectrum at each fibre position. For astronomical instruments, optical fibres give significant flexibility in configuring a focal plane, but FRD can affect the performance of the fibres and directly influence the efficiency of any galaxy survey observed. Novel techniques used in glass fibre processing have enabled hexabundles optimal performance with minimal FRD. In this paper, we display the optimisation of the Hexabundle design and the FRD performance of the units.
Hector1, 5 is the next dark-time instrument to be commissioned on the Anglo-Australian Telescope (AAT) and will include 21 IFUs called hexabundles2-4, 6 that will sit on the 2-degree top end. These hexabundles are bundles of fibres that are packed in a regular hexagonal array. They are built in sizes of 37, 61, 91, 127, and 169 fibres. The distribution of sizes of hexabundles was calculated to maximize the efficiency of the galaxy survey. The Hector hexabundles have been optimized for this instrument. Their regular hexagonal packing has been developed to improve data reduction accuracy, and the fibres have had a short length of their cladding etched in order to pack them as tightly as possible without reducing the optical quality of the devices.
The Starbug technology1 developed by AAO-MQ allows fibre positioners to be built with large multiplexing capabilities. The Starbug robots are positionable individually and in parallel, which results in significant configuration time improvements over what can be achieved by single-arm pick and place robots. Their design allows the Starbugs to carry a complex payload, and their movement mechanism and vacuum adhesion to the instrument's glass field plate at the telescope's focal plane means that they can be used to position fibres on a non-planar surface.
New optical fibre spectroscopic imaging devices for astronomy are being developed with very high throughput and excellent optical performance. Hector is a new generation multi-object Integral Field Spectroscopy (IFS) instrument that will utilise these high-performance fibre imaging devices called hexabundles". They are being developed in the Sydney Astrophotonic Instrumentation Laboratories (SAIL) at the University of Sydney. Hector is planned to be using these hexabundles on-sky by 2020 to carry out one of the world largest IFS galaxy surveys at the Anglo-Australian Telescope (AAT). The hexabundles contain up to 169 multi-mode Ceramoptec WF103/123um fibres per device, subtending a 26 arcseconds view with a spectrum at each fibre position for each galaxy. For astronomical instruments, optical fibres give significant flexibility in configuring a focal plane, but focal ratio degradation (FRD) can affect the performance of the optical fibres and directly influence the efficiency of any galaxy survey observed. Breakthroughs in glass fibre processing at SAIL have enabled hexabundles with minimal FRD - and therefore optimal performance. We will present the new developments in the SAIL labs and the resulting performance of new hexabundle devices for Hector and for other future applications.
MANIFEST is a multi-object fibre facility for the Giant Magellan Telescope that uses ‘Starbug’ robots to accurately position fibre units across the telescope’s focal plane. MANIFEST, when coupled to the telescope’s planned seeinglimited instruments, offers access to larger fields of view; higher multiplex gains; versatile focal plane reformatting of the focal plane via integral-field-units; image-slicers; and in some cases higher spatial and spectral resolution. The TAIPAN instrument on the UK Schmidt Telescope is now close to science verification which will demonstrate the feasibility of the Starbug concept. We are now moving into the conceptual development phase for MANIFEST, with a focus on developing interfaces for the telescope and for the instruments.
The 4MOST1 instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST long fiber feed links the AESOP2 fiber positioner to two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In addition to the 2436 science fibers, the system includes guide fiber bundles, metrology fiducial fibers and simultaneous calibration fibers for the spectrographs. To validate the design approaches, including fiber connectors and cable rotator, pre-production fiber cables have been built and evaluated. This paper presents the near final design of the fiber feed subsystem and its performance results pertaining to throughput homogeneity, focal ratio degradation, and connector loss of the pre-production cables.
The AAO Starbugs is a multi-functional positioning device used in the TAIPAN instrument currently being commissioned on the UK Schmidt Telescope at Siding Spring Observatory in Australia. TAIPAN is part of a design study for MANIFEST which is a fibre positioning instrument proposed for the Giant Magellan Telescope. The acquisition and guiding system for TAIPAN uses nine standard Starbugs, referred to as Guide Bugs. Each one uses a 7000 core coherent polymer fibre bundle on individual guide stars. This provides an astrometric reference frame for science fibre positioning, telescope guiding, instrument alignment and focus, all of which are invariant to telescope and atmospheric geometric anomalies. Guide Bugs are a technology that will enable improved science results for the TAIPAN instrument. In this paper we outline the design features and provide an update on software development.
The original optical fibre imaging bundles called `hexabundles' have proven to be exceptionally effective in the Sydney-AAO Multi-object IFS (SAMI) instrument, enabling one of the worlds largest IFS galaxy surveys5, 6. We are now developing an improved next-generation hexabundle design. These IFUs use a novel assembly technique developed in the Sydney Astrophotonic Instrumentation Laboratories (SAIL) at the University of Sydney, that enable very high fill-fraction and an evenly distributed, hexagonally packed, array of 217 fibre cores. These new hexabundles will see first light in 2019 on the new Hector-I instrument for the Anglo-Australian Telescope (AAT). The large number of fibre cores will measure spatially-resolved spectroscopy of galaxies out to 2 effective radii. The hexabundles are currently being prototyped, and characterised. The impact of the hexagonal packing of the fibre cores on Focal Ratio Degradation (FRD), total throughput of the device and overall performance will be presented.
In this paper we present recent progress on the Australian Astronomical Observatory’s AESOP2 fiber positioner for 4MOST (on VISTA). As an evolution of the Echidna “spine” technology used for FMOS (on Subaru), AESOP has challenging requirements to position 2,448 fibers in parallel, within 1 minute, to an accuracy of < 10 um RMS. AESOP successfully passed ESO’s official final design review and manufacturing has commenced. We present performance results from the first batch of newly-manufactured positioners and also report on how the AESOP project is tracking in terms of schedule, budget and risk.
The AAO’s TAIPAN instrument is a multi-object fibre positioner and spectrograph installed on the 1.2m UK-Schmidt telescope at Siding Spring Observatory. The positioner, a prototype for the MANIFEST positioner on the Giant Magellan Telescope, uses independently controlled Starbug robots to position a maximum of 300 optical fibres on a 32cm glass field plate (for a 6 degree field of view), to an accuracy of 5 microns (0.3 arcsec). The Starbug technology allows multi-object spectroscopy to be carried out with a minimum of overhead between observations, significantly decreasing field configuration time. Over the next 5 years the TAIPAN instrument will be used for two southern-hemisphere surveys: Taipan, a spectroscopic survey of 1x10^6 galaxies at z<0.3, and FunnelWeb, a stellar survey complete to Gaia G=12.5. In this paper we present an overview of the operational TAIPAN instrument: its design, construction and integration, and discuss the 2017 commissioning campaign and science verification results obtained in early 2018.
The Australian Astronomical Observatory’s (AAO’s) AESOP project is part of the 4 metre Multi-Object Spectrograph Telescope (4MOST) system for the VISTA telescope. It includes the 2436-fiber positioner, space frame and electronics enclosures. The AESOP concept and the role of the AAO in the 4MOST project have been described in previous SPIE proceedings. Prototype tests, which were completed early in 2017 demonstrated that the instrument requirements are satisfied by the design. The project final design stage has recently been completed. In this paper, key features of the AESOP positioning system design, along with the techniques developed to overcome key mechanical, electronic, and software engineering challenges are described. The major performance requirement for AESOP is that all 2436 science fiber cores and 12 guide fiber bundles are to be re-positioned to an accuracy of 10 µm within 1 minute. With a fast prime-focus focal-ratio, a close tolerance on the axial position of the fiber tips must be held so efficiency does not suffer from de-focus losses. Positioning accuracy is controlled with the metrology cameras installed on the telescope, which measures the positions of the fiber tips to an accuracy of a few µm and allows iterative positioning until all fiber tips are within tolerance. Maintaining co-planarity of the fiber tips requires accurate control in the assembly of several components that contribute to such errors. Assembly jigs have been developed and proven adequate for this purpose. Attaining high reliability in an assembly with many small components of disparate materials bonded together, including piezo ceramics, carbon fiber reinforced plastic, hardened steel, and electrical circuit boards, has entailed careful selection and application of cements and tightly controlled soldering for electrical connections.
Based on the success of the SAMI integral field spectrograph (IFS) instrument on the Anglo-Australian Telescope (AAT) the capacity for large IFS nearby galaxy surveys on the AAT is being substantially expanded with a new instrument called Hector. The high filling-fraction imaging fibre bundles ‘hexabundles’ of the type used on SAMI, are being enlarged to cover up to 30-arcsec diameter. The aim is to reach two effective radii on most galaxies, where the galaxy rotation curve flattens and >75% of the specific angular momentum of disk galaxies is accounted for. Driven by the key science case, Hector will have a 1.3A spectral resolution, enabling high-order stellar kinematics to be measured on a larger fraction of galaxies than with any other IFS instrument. Hector will be on sky in 2019.
The first module of Hector, Hector-I, will have 21 hexabundles and >42 sky fibres to observe 20 galaxies and a calibration star simultaneously. It consists of new blue and red-arm spectrographs that have been designed at the Australian Astronomical Observatory (AAO; now called AAO-Macquarie), coupled to the new hexabundles and robotic positioner from AAO-USydney (formerly the Sydney Astrophotonics Instrumentation Laboratory, SAIL) at Sydney University. A novel robotic positioning concept will compensate for varying telecentricity over the 2-degree-field of the AAT to recoup the 20% loss in light at the edge of the field. Hector-I will survey 15,000 galaxies. Additional modules in the future would result in 30,000 galaxies.
Hector will take integral field spectroscopy on galaxies with z<0.15 in the 4MOST WAVES-North and WAVES-South∗ regions. The WAVES data, which will come later, will give the environment metrics neces- sary to relate how local and global environments influence galaxy growth through gas accretion, star formation and spins measured with Hector. The WALLABY ASKAP† survey will trace HI gas across the Hector fields, which in combination with Hector will give a complete view of gas accretion and star formation.
In this paper we present the Australian Astronomical Observatory’s concept design for Sphinx - a fiber positioner with 4,332 “spines” on a 7.77mm pitch for CFHT’s Mauna Kea Spectroscopic Explorer (MSE) Telescope. Based on the Echidna technology used with FMOS (on Subaru) and 4MOST (on VISTA), the next evolution of the tilting spine design delivers improved performance and superior allocation efficiency. Several prototypes have been constructed that demonstrate the suitability of the new design for MSE. Results of prototype testing are presented, along with an analysis of the impact of tilting spines on the overall survey efficiency. The Sphinx fiber positioner utilizes a novel metrology system for spine position feedback. The metrology design and the careful considerations required to achieve reliable, high accuracy measurements of all fibers in a realistic telescope environment are also presented.
MANIFEST is a facility multi-object fibre system for the Giant Magellan Telescope, which uses ‘Starbug’ fibre positioning robots. MANIFEST, when coupled to the telescope’s planned seeing-limited instruments, GMACS, and G-CLEF, offers access to: larger fields of view; higher multiplex gains; versatile reformatting of the focal plane via IFUs; image-slicers; and in some cases higher spatial and spectral resolution. The Prototyping Design Study phase for MANIFEST, nearing completion, has focused on developing a working prototype of a Starbugs system, called TAIPAN, for the UK Schmidt Telescope, which will conduct a stellar and galaxy survey of the Southern sky. The Prototyping Design Study has also included work on the GMT instrument interfaces. In this paper, we outline the instrument design features of TAIPAN, highlight the modifications that will be necessary for the MANIFEST implementation, and provide an update on the MANIFEST/instrument interfaces.
TAIPAN will conduct a stellar and galaxy survey of the Southern sky. The TAIPAN positioner is being developed as a prototype for the MANIFEST instrument on the GMT. The design for TAIPAN incorporates 150 optical fibres (with an upgrade path to 300) situated within independently controlled robotic positioners known as Starbugs. Starbugs allow precise parallel positioning of individual fibres, thus significantly reducing instrument configuration time and increasing the amount of observing time. Presented is an engineering overview of the UKST upgrade of the completely new Instrument Spider Assembly utilized to support the Starbug Fibre Positioning Robot and current status of the Starbug itself.
TAIPAN will conduct a stellar and galaxy survey of the Southern sky. The TAIPAN positioner is being developed as a prototype for the MANIFEST instrument on the GMT. The TAIPAN Spectrograph is an AAO designed all-refractive 2-arm design that delivers a spectral resolution of R>2000 over the wavelength range 370-870 nm. It is fed by a custom fibre cable from the TAIPAN Starbugs positioner. The design for TAIPAN incorporates 150 optical fibres (with an upgrade path to 300). Presented is an engineering overview of the UKST Fibre Cable design used to support Starbugs, the custom slit design, and the overall design and build plan for the TAIPAN Spectrograph.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.