In this work, we improved charge carrier separation efficiency through a g-C3N4/GaN NRs heterostructure device. We characterized the properties of the g-C3N4/GaN NRs device with detecting the UV light and sensing NO2 gas at room temperature. The device showed high responsivity and detectivity under zero bias conditions due to the built-in field at the interface of the heterostructure. The performance of the heterostructure was stimulated under UV light illuminations with 2.3 times higher response compared to the darkness. In addition, the device response to NO2, NH3, H2, H2S and CO ambient gases at RT were measured, the device exhibited high response to NO2 gas. The low activation energy promoted to capture NO2 gas molecules.
In this work, we have investigated the variation of internal electric field of 4-period In0.16Ga0.84N/pseudo-AlInGaN multiquantum wells (MQWs) embedded in p-i-n structure by surface acoustic waves (SAWs). The pseudo-AlInGaN barriers consist of two In0.16Ga0.84N(11 Å) sandwiched by three Al0.064Ga0.936N (15 Å). The equivalent indium and aluminum compositions in pseudo-AlInGaN barrier are 0.043 and 0.052, respectively, which can be calculated by volume ratio. For reference purpose, In0.16Ga0.84N/GaN MQWs was also used. To generate surface acoustic wave, interdigital patterns with 1 μm finger width were fabricated by e-beam lithography. The piezoelectric fields for GaN barrier and pseudo- Al0.043In0.052Ga0.905N barrier samples are found to be 1.5 MV/cm, 0.33 MV/cm from bias-PL. From μ-PL measurement for pseudo-Al0.043In0.052Ga0.905N barrier sample, we observed lowest luminescence intensity at 100 MHz and 13 dBm in radio frequency (RF) generator, which means that electron-hole recombination can be suppressed by SAWs. The Photocurrent measurement for pseudo-Al0.043In0.052Ga0.905N barrier sample was observed increasing around 2 orders of magnitude at 100 MHz when compare to GaN barrier sample. Based on our results, the reduced piezoelectric field added to SAWs can be provided one of the solutions for enhancing photocurrent in III-nitride photovoltaic devices by extract carriers from quantum wells easily and enhancing traveling length of carriers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.