Future generations of X-ray astronomy instruments will require position sensitive detectors in the form of charge-coupled devices (CCDs) for X-ray spectroscopy and imaging with the ability to probe the X-ray universe with greater efficiency. This will require the development of CCDs with structures that will improve their quantum efficiency over the current state of the art. The quantum efficiency improvements would have to span a broad energy range (0.2 keV to >15 keV). These devices will also have to be designed to withstand the harsh radiation environments associated with orbits that extend beyond the Earth's magnetosphere. This study outlines the most recent work carried out at the University of Leicester focused on improving the quantum efficiency of an X-ray sensitive CCD through direct manipulation of the device depletion region. It is also shown that increased spectral resolution is achieved using this method due to a decrease in the number of multi-pixel events. A Monte Carlo and analytical models of the CCD have been developed and used to determine the depletion depths achieved through variation of the device substrate voltage, Vss. The models are also used to investigate multi-pixel event distributions and quantum efficiency as a function of depletion depth.
CCD detectors in the focal plane cameras of grazing incidence X-ray telescopes on the XMM-Newton and SWIFT
satellites have encountered damage which has been attributed to impacts by external particles. The apparent mechanism
is one whereby interplanetary micrometeoroid particles or space debris have been ingested by the grazing incidence
mirrors and scattered down the telescope tube on to the CCD detectors in the focal plane.
At the time of writing, there have been 5 such events detected in total by the three XMM telescopes during five years of
operations and one event detected by the SWIFT X-ray Telescope (XRT) during one year in orbit. Significantly, no
events of this type have been reported for Chandra.
Modelling and analysis of scattering of small particles from grazing incidence mirrors allows us to explain the different
impact rates seen by these three satellites. Furthermore, using the ESA MASTER2005 micrometeoroid and space debris
impacts flux model, impact rates have been derived from consideration of Swift's orbit, pointing history and the dust and
debris particle environment. This modelling can be used to determine whether risk mitigation strategies are required for
the continuing operation of SWIFT and other operating observatories, and also provides a basis for predicting particle
impact rates for grazing incidence telescopes on future missions such as XEUS, Constellation-X and others.
In recent years the XEUS mission concept has evolved and has been the subject of several industrial studies. The mission concept has now matured to the point that it could be proposed for a Phase A study and subsequent flight programme. The key feature of XEUS will be its X-ray optic with collecting area ~30-100x that of XMM. The mission is envisaged at an orbit around the L2 point in space, and is formed from two spacecraft; one for the mirrors, and the other for the focal plane detectors. With a focal length of 50m, the plate scale of the optic is 6.5x that of XMM, which using existing focal plane technology will reduce the effective field of view to a few arc minutes. Cryogenic instrumentation, with detector sizes of a few mm can only be used for narrow field studies of target objects, and a wide field instrument is under consideration using a DEPFET pixel array to image out to a diameter of 5 arcminutes, requiring an array of dimension 70mm. It is envisaged to extend this field of view possibly out to 15 arcminutes through the use of an outer detection ring comprised of MOS CCDs
XMM-Newton was launched into space on a highly eccentric 48 hour orbit on December 10th 1999. XMM-Newton is now in its fifth year of operation and has been an outstanding success, observing the Cosmos with imaging, spectroscopy and timing capabilities in the X-ray and optical wavebands. The EPIC-MOS CCD X-ray detectors comprise two out of three of the focal plane instruments on XMM-Newton. In this paper we discuss key aspects of the current status and performance history of the charge transfer ineffiency (CTI), energy resolution and spectral redistribution function (rmf) of EPIC-MOS in its fifth year of operation.
The next generation of X-ray astronomy instruments will require position sensitive detectors in the form of charge coupled devices (CCDs) for X-ray spectroscopy and imaging that will have the ability to probe the X-ray universe with a greater efficiency. This will require the development of CCDs with structures that will improve on the quantum efficiency of the current state of the art over a broader spectral range in addition to reducing spectral features, which may affect spectral resolution and signal to background levels. These devices will also have to be designed to withstand the harsh radiation environments associated with orbits that extend beyond the Earth’s magnetosphere. The next generation X-ray telescopes will incorporate larger X-ray optics that will allow deeper observations of the X-ray universe and sensors will have to compensate for this by an increased readout speed. This study will aim to describe some of the results obtained from test CCD structures that may fit many of the requirements described above.
The ESA cornerstone mission GAIA will perform astrometric, photometric and spectroscopic measurements and is due for launch in 2010 into L2 orbit. The astrometric telescope system will catalogue the position of over 109 objects down to 20th magnitude and perform broadband photometry. The spectroscopic telescope will provide narrow-band photometry and feed a Radial Velocity Spectrometer which will accurately determine the radial velocities of objects down to 17-18 magnitude. This paper discusses the characteristics of the detectors envisaged for the focal plane of the RVS instrument.
The Swift X-ray Telescope is a powerful instrument for measuring the X-ray spectral properties of GRB afterglows. The spectroscopic capabilities are obtained through the energy resolving properties of the X-ray CCD imager in the focal plane of the X-ray Telescope. A range of CCD operating modes allow GRB afterglows to be followed over 5 orders of brightness as the afterglow decays. The spectroscopic response in each mode has been determined as part of the XRT calibration program and is being incorporated into the XRT instrument response matrices. These responses are being used to simulate GRB spectra as part of the pre-launch mission planning for Swift.
The Swift X-ray Telescope (XRT) is designed to make astrometric, spectroscopic and photometric observations of the X-ray emission from Gamma-ray bursts and their afterglows, in the energy band 0.2 - 10 keV. Here we report first results of the analysis of Swift XRT effective area at five different energies as measured during the end-to-end calibration campaign at the Panter X-ray beam line facility. The analysis comprises the study of the effective area both on-axis and off-axis for different event grade selection. We compare the laboratory results with the expectations and show that the measured effective area meets the mission scientific requirements.
The SWIFT X-ray Telescope (XRT) is designed to make astrometric, spectroscopic and photometric observations of the X-ray emission from Gamma-ray bursts and their afterglows, in the energy band 0.2 - 10 keV. Here we report the results of the analysis of SWIFT XRT Point Spread Function (PSF) as measured during the end-to-end calibration campaign at the Panter X-Ray beam line facility. The analysis comprises the study of the PSF both on-axis and off-axis. We compare the laboratory results with the expectations from the ray-tracing software and from the mirror module tested as a single unit. We show that the measured HEW meets the mission scientific requirements. On the basis of the calibration data we build an analytical model which is able to reproduce the PSF as a function of the energy and the position within the detector.
The Swift X-ray Telescope (XRT) is designed to make astrometric, spectroscopic, and photometric observations of X-ray emission from Gamma-ray Bursts and their afterglows in the energy band 0.2-10 keV. In order to provide rapid-response, automated observations of these randomly occurring objects without ground intervention, the XRT must be able to observe objects covering some seven orders of magnitude in flux, extracting the maximum possible science from each one. This requires a variety of readout modes designed to optimise the information collected in response to shifting scientific priorities as the flux from the burst diminishes.
The XRT will support four major readout modes: imaging, two timing modes and photon-counting, with several sub-modes. We describe in detail the readout modes of the XRT. We describe the flux ranges over which each mode will operate, the automated mode switching that will occur and the methods used for collection of bias information for this instrument. We also discuss the data products produced from each mode.
The ESA cornerstone mission GAIA will perform astrometric and photometric measurements on one billion objects, and is due for launch in 2010 into L2 orbit. The key astrometric focal plane will comprise over 180 large area CCDs with a focal surface of about 0.5m2. The 45x60mm2 CCDs for the focal plane will include technical features new to CCDs. This paper will discuss the characteristics of these devices, including the measures to improve the radiation hardness of the technology.
The effect of different proton fluences on the performance of two E2V Technologies CCD47-20 devices was investigated with particular emphasis given to the analysis of 'random telegraph signal' (RTS) generation, bright pixel generation and induced changes in base dark current level. The results show that bright pixel frequency increases as the mean energy of the proton beam is increased, and that the base dark current level after irradiation scales with the level of ionization damage. For the RTS study, 500 pixels on one device were monitored over a twelve hour period. This data set revealed a number of distinct types of pixel change level fluctuation and a system of classification has been devised. Previously published RTS data is discussed and reviewed in light of the new data.
The Swift X-ray Telescope (XRT)[1] is designed to make astrometric, spectroscopic, and photometric observations of X-ray emission from Gamma-ray Bursts and their afterglows in the energy band 0.2-10 keV. The XRT has a variety of readout modes which it automatically selects in order to observe objects covering 7 orders of magnitude in flux and to extract the maximum possible science from each one, in response to the flux from the burst diminishing. The primary goal of the XRT is to locate the position of the Gamma-Ray Burst to 1 arcsec and to transmit this position to the UVOT and the ground within 100 seconds of the initial observation of the burst. We describe in detail the use of imaging mode and a centroid algorithm to determine the position of the Gamma-Ray Burst with sub-pixel accuracy.
The Swift Gamma-Ray Burst Explorer will be launched late in 2003 to make prompt multiwavelength observations of Gamma-Ray Bursts and Afterglows. The X-ray Telescope (XRT) provides key capabilities that permit Swift to determine GRB positions with several arcsecond accuracy within 100 seconds of the burst onset. The XRT is designed to observe GRB afterglows covering over seven orders of magnitude in flux in the 0.2-10 keV band, with completely autonomous operation. GRB positions are determined within seconds of target acquisition, and accurate positions are sent to the ground for distribution over the GCN. The XRT can also measure redshifts of GRBs for bursts with Fe line emission or other spectral features.
XEUS is the post-XMM next generation x-ray observatory which is currently under study by ESA. The mission aims to image the x-ray early universe through the study of feint, high red-shift objects. To provide sufficient photons to enable spectroscopy on these distant objects requires a telescope collecting area greatly in excess of those in use today, and an x-ray optic with collecting area ~100x of XMM is ultimately envisaged. With a focal length of 50m, the plate scale of the optic is 6.5x that of XMM, which using existing focal plane technology will reduce the effective field of view to a few arc minutes. Cryogenic instrumentation, with detector sizes of a few mm can only be used for narrow field studies of target objects, and a wide field instrument is under consideration using a DEPFET pixel array to image out to a diameter of 5 arcminutes, requiring an array of dimension 70mm. Since the useful field of view of the XEUS optic will extend to a diameter of 30 arcminutes, the potential of the optic could be very under-utilized. Here we propose an extension to the wide field imager, the E-WFI, comprised of a ring array of CCDs which will increase the coverage of the focal plane, and greatly increase the serendipitous science resulting from the mission. Here we describe the first design concept for the E-WFI, and discuss the technical advancements in MOS CCD technology which will enhance the science of the mission.
The essential optical components of the Swift X-ray Telescope (XRT) are already developed items. They are: the flight spare x-ray mirror from the JET-X/Spectrum-X program and a MOS CCD (CCD22) of the type currently operating in orbit as part of the EPIC focal plane camera on the XMM- Newton. The JET-X mirrors were first calibrated at the Max Plank Institute for Extraterrestrial Physics' (MPE) Panter facility, Garching, Germany in 1996. Half energy widths (HEW) of 16 arc seconds at 1.5 keV were confirmed for the two flight mirrors and the flight spare. The calibration of the flight spare was repeated at Panter in July 2000 in order to establish whether any changes had occurred during the four years that the mirror had been in storage at the OAB, Milan, Italy. This results reported in this paper, confirm that the resolution of the JET-X mirrors has remained stable over this storage period. In an extension of this test program, the flight spare EPIC camera was installed at the focus of the JET-X mirror to simulate the optical system of the Swift X-ray telescope. On-axis and off-axis point spread functions (PSFs) were measured and calibration data sets were used to obtain centroid positions of X-ray point sources. The results confirmed Swift's ability to determine the centroid positions of sources at 100mCrab brightness to better than 1 arc second and provided a calibration of the centroiding process as a function of source flux and off axis angle. The presence of background events in the image frame introduced errors in the centroiding process, making the choice of centroiding algorithm important. Algorithm performance and the trade-off between processing speed and centroiding accuracy were investigated.
Fast neutron radiography is an element sensitive non- destructive testing method with potential applications in industry and the detection of contraband and explosives. The physical processes that control image formation can be examined individually by a variety of analytical and experimental methods in order to determine their impact on contrast, resolution and detectability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.