This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the features during the etch process. Herein we will also demonstrate a test case on how a combination or plasma assisted and plasma free etch techniques has the potential to improve process performance of a 193nm immersion based self aligned quandruple patterning (SAQP) for BEOL compliant films (an example shown in Fig 2). In addition, we will also present on the application of gas etches for (1) profile improvement, (2) selective mandrel pull (3) critical dimension trim of mandrels, with an analysis of advantages over conventional techniques in terms of LER and EPE.
In this paper we will introduce self-alignment based block and cut strategies using multi-color materials integration and show implementation for BEOL trench block patterning. We will present a breakdown of the key unit process challenges that were needed to be resolved for enabling the self-alignment such as: (a) material selection of multi-color approach; (b) planarization of spin on materials; (c) void-free gap fill for high aspect ratio features; and last but not the least, (c) etch selectivity of etching one material with respect to all other materials exposed. Further, we will present a comparison of our new self-alignment approach with standard approaches where we will articulate the advantages in terms of EPE relaxation and mask number reduction. We will conclude our talk with a brief snapshot of the future direction of our EPE improvement strategies and our view on the future of patterning beyond 5nm node for the industry.
In this paper we propose and demonstrate a low cost flexible self-aligned blocking strategy for critical metal layer patterning for 7nm and beyond from mask assembly to low –K dielectric etch. The integration is based on a 40nm pitch SADP flow with 2 cut masks compatible with either cut or block integration and employs dielectric films widely used in the back end of the line. As a consequence this approach is compatible with traditional etch, deposition and cleans tools that are optimized for dielectric etches. We will review the critical steps and selectivities required to enable this integration along with bench-marking of each integration option (cut vs. block).
In this paper we highlight the unique challenges associated in developing resist trim / reformation plasma etch process for SAQP integration scheme and summarize our efforts in optimizing the trim etch chemistries, process steps and plasma etch parameters for meeting the mandrel definition targets. Finally, we have shown successful patterning of 30nm pitch patterns via the resist-mandrel SAQP scheme and its implementation for Si-fin formation at 7nm node.
View contact details
No SPIE Account? Create one