KEYWORDS: Coronagraphy, Point spread functions, James Webb Space Telescope, Stars, Signal to noise ratio, Exoplanets, Calibration, Visibility, Space telescopes, Device simulation
The James Webb Space Telescope (JWST) and its suite of instruments, modes and high contrast capabilities will enable imaging and characterization of faint and dusty astrophysical sources1-3 (exoplanets, proto-planetary and debris disks, dust shells, etc.) in the vicinity of hosts (stars of all sorts, active galactic nuclei, etc.) with an unprecedented combination of sensitivity and angular resolution at wavelengths beyond 2 μm. Two of its four instruments, NIRCam4, 5 and MIRI,6 feature coronagraphs7, 8 for wavelengths from 2 to 23 μm. JWST will stretch the current parameter space (contrast at a given separation) towards the infrared with respect to the Hubble Space Telescope (HST) and in sensitivity with respect to what is currently achievable from the ground with the best adaptive optics (AO) facilities. The Coronagraphs Working Group at the Space Telescope Science Institute (STScI) along with the Instruments Teams and internal/external partners coordinates efforts to provide the community with the best possible preparation tools, documentation, pipelines, etc. Here we give an update on user support and operational aspects related to coronagraphy. We aim at demonstrating an end to end observing strategy and data management chain for a few science use cases involving coronagraphs. This includes the choice of instrument modes as well as the observing and point-spread function (PSF) subtraction strategies (e.g. visibility, reference stars selection tools, small grid dithers), the design of the proposal with the Exposure Time Calculator (ETC), and the Astronomer's Proposal Tool (APT), the generation of realistic simulated data at small working angles and the generation of high level, science-grade data products enabling calibration and state of the art data-processing.
A starshade with the James Webb Space Telescope (JWST) is the only possible path forward in the next
decade to obtain images and spectra of a planet similar to the Earth, to study its habitability, and search for
signs of alien life. While JWST was not specifically designed to observe using a starshade, its near-infrared
instrumentation is in principle capable of doing so and could achieve major results in the study of terrestrialmass
exoplanets. However, because of technical reasons associated with broadband starlight suppression and
filter red-leak, NIRSpec would need a slight modification to one of its target acquisition filters to enable feasible
observations of Earth-like planets. This upgrade would 1) retire the high risk associated with the effects of the
current filter red leak which are difficult to model given the current state of knowledge on instrument stray light
and line spread function at large separation angles, 2) enable access to the oxygen band at 0.76 μm in addition
to the 1.26 μm band, 3) enable a smaller starshade by relaxing requirements on bandwidth and suppression 4)
reduce detector saturation and associated long recovery times. The new filter would not affect neither NIRSpecs
scientific performance nor its operations, but it would dramatically reduce the risk of adding a starshade to JWST
in the future and enhance the performance of any starshade that is built. In combination with a starshade, JWST
could be the most capable and cost effective of all the exoplanet hunting missions proposed for the next decade,
including purpose built observatories for medium-size missions.
ACCESS is one of four medium-class mission concepts selected for study in 2008-9 by NASA's Astrophysics Strategic
Mission Concepts Study program. ACCESS evaluates a space observatory designed for extreme high-contrast imaging
and spectroscopy of exoplanetary systems. An actively-corrected coronagraph is used to suppress the glare of diffracted
and scattered starlight to contrast levels required for exoplanet imaging. The ACCESS study considered the relative
merits and readiness of four major coronagraph types, and modeled their performance with a NASA medium-class space
telescope. The ACCESS study asks: What is the most capable medium-class coronagraphic mission that is possible with
telescope, instrument, and spacecraft technologies available today? Using demonstrated high-TRL technologies, the
ACCESS science program surveys the nearest 120+ AFGK stars for exoplanet systems, and surveys the majority of
those for exozodiacal dust to the level of 1 zodi at 3 AU. Coronagraph technology developments in the coming year are
expected to further enhance the science reach of the ACCESS mission concept.
Herein we report on a preliminary study to assess the use of the Hubble Space Telescope (HST) for the direct detection
and spectroscopic characterization of exoplanets and debris disks - an application for which HST was not originally
designed. Coronagraphic advances may enable the design of a science instrument that could achieve limiting contrasts
~109 beyond 275 milli-arcseconds (4 λ/D at 800 nm) inner working angle, thereby enabling detection and
characterization of several known jovian planets and imaging of debris disks. Advantages of using HST are that it
already exists in orbit, it's primary mirror is thermally stable and it is the most characterized space telescope yet flown.
However there is drift of the HST telescope, likely due to thermal effects crossing the terminator. The drift, however, is
well characterized and consists of a larger deterministic components and a smaller stochastic component. It is the effect
of this drift versus the sensing and control bandwidth of the instrument that would likely limit HST coronagraphic
performance. Herein we discuss the science case, quantify the limiting factors and assess the feasibility of using HST for
exoplanet discovery using a hypothetical new instrument.
The James Webb Space Telescope will be an extraordinary observatory, providing a huge range of exciting new
astrophysical results. However, by itself it will not be capable of directly imaging planets in the habitable zone of
nearby stars, one of the most fascinating goals of astronomy for the coming decade. In this paper we discuss the
New Worlds Probe (NWP) concept whereby we use an external occulter (or starshade) to cast a shadow from
the star onto the telescope, therefore canceling the direct star light while the light from a planet is not affected.
This concept enables JWST to take images and spectra of extrasolar planets with sufficient contrast and inner
working angle to be able to discover planets down to the size of the Earth in the habitable zone around nearby
stars. JWST's instruments are appropriate to achieve low resolution spectroscopy (R ≅ 40) of these planets, and
address a series of fundamental questions: are there planets in the habitable zone around nearby stars? What
is the composition of their atmosphere? What are the brightness and structures of exozodiacal disks around
nearby stars? What is the mass and composition of currently known giant planets? In this paper we study the
starshade optimization for JWST given the instrumental constraints, and show that the modest optical quality
of the telescope at short wavelength does not impact the possibility of using a starshade. We propose a solution
to enable imaging and spectroscopy using target acquisition filters. We discuss possible time allocation among
science goals based on exposure time estimates and total available observing time. The starshade can be launched
up to 3 years after JWST and rendezvous with the telescope in orbit around L2.
ACCESS (Actively-Corrected Coronagraph for Exoplanet System Studies) develops the science and engineering case for
an investigation of exosolar giant planets, super-earths, exo-earths, and dust/debris fields that would be accessible to a
medium-scale NASA mission. The study begins with the observation that coronagraph architectures of all types (other
than the external occulter) call for an exceptionally stable telescope and spacecraft, as well as active wavefront
correction with one or more deformable mirrors (DMs). During the study, the Lyot, shaped pupil, PIAA, and a number
of other coronagraph architectures will all be evaluated on a level playing field that considers science capability
(including contrast at the inner working angle (IWA), throughput efficiency, and spectral bandwidth), engineering
readiness (including maturity of technology, instrument complexity, and sensitivity to wavefront errors), and mission
cost so that a preferred coronagraph architecture can be selected and developed for a medium-class mission.
For the past several years NASA has been developing the Terrestrial Planet Finder Coronagraph (TPF-C), a space based
telescope mission to look for Earth-like extra-solar planets. By evaluating the cumulative number of habitable zones
observable with a given observation sequence (completeness) we test the relative merits of the baseline 8-m telescope
design and smaller (2.5 - 4 m), less capable TPF-C designs based on various coronagraph technologies as well as
external occulters.
The Terrestrial Planet Finder Coronagraph (TPF-C) is a deep space mission designed to detect and characterize Earth-like planets around nearby stars. TPF-C will be able to search for signs of life on these planets. TPF-C will use spectroscopy to measure basic properties including the presence of water or oxygen in the atmosphere, powerful signatures in the search for habitable worlds. This capability to characterize planets is what allows TPF-C to transcend other astronomy projects and become an historical endeavor on a par with the discovery voyages of the great navigators.
Eclipse is a proposed Discovery-class mission to perform a sensitive imaging survey of nearby planetary systems, including a complete survey for Jupiter-sized planets orbiting 5 AU from all stars of spectral types A-K to distances of 15 pc. Eclipse is a coronagraphic space telescope concept designed for high-contrast visible wavelength imaging and spectrophotometry. Its optical design incorporates essential elements: a telescope with an unobscured aperture of 1.8 meters and optical surfaces optimized for smoothness at critical spatial frequencies, a coronagraphic camera for suppression of diffracted light, and precision active optical correction for suppression of light scattered by residual mirror surface irregularities. For reference, Eclipse is predicted to reduce diffracted and scattered starlight between 0.25 and 2.0 arcseconds from the star by at least three orders of magnitude compared to any HST instrument. The Eclipse mission offers precursor science explorations and critical technology validation in
support of coronagraphic concepts for NASA's Terrestrial Planet Finder (TPF). A baseline three-year science mission would provide a survey of the nearby stars accessible to TPF before the end of this decade, promising fundamental new insights into the nature and evolution of possibly diverse planetary systems associated with our Sun's nearest neighbors.
KEYWORDS: Planets, Stars, Signal to noise ratio, Space telescopes, Hubble Space Telescope, Coronagraphy, Wavefronts, Exoplanets, Telescopes, Point spread functions
Recent advances in deformable mirror technology for correcting wavefront errors and in pupil shapes and masks for coronagraphic suppression of diffracted starlight enable a powerful approach to detecting extrasolar planets in reflected (scattered) starlight at visible wavelengths. We discuss the planet-finding performance of Hubble-like telescopes using these technical advances. A telescope of aperture of at least 4 meters could accomplish the goals of the Terrestrial Planet Finder (TPF) mission. The '4mTPF' detects an Earth around a Sun at five parsecs in about one hour of integration time. It finds molecular oxygen, ozone, water vapor, the 'red edge' of chlorophyll-containing land-plant leaves, and the total atmospheric column density -- all in forty hours or less. The 4mTPF has a strong science program of discovery and characterization of extrasolar planets and planetary systems, including other worlds like Earth. With other astronomical instruments sharing the focal plane, the 4mTPF could also continue and expand the general program of astronomical research of the Hubble Space Telescope.
We present an overview of the ACS on-orbit performance based on the calibration observations taken during the first three months of ACS operations. The ACS meets or exceeds all of its important performance specifications. The WFC and HRC FWHM and 50% encircled energy diameters at 555 nm are 0.088" and 0.14", and 0.050" and 0.10". The average rms WFC and HRC read noises are 5.0 e- and 4.7 e-. The WFC and HRC average dark currents are ~ 7.5 and ~ 9.1 e-/pixel/hour at their operating temperatures of - 76°C and - 80°C. The SBC + HST throughput is 0.0476 and 0.0292 through the F125LP and F150LP filters. The lower than expected SBC operating temperature of 15 to 27°C gives a dark current of 0.038 e-/pix/hour. The SBC just misses its image specification with an observed 50% encircled energy diameter of 0.24" at 121.6 nm. The ACS HRC coronagraph provides a 6 to 16 direct reduction of a stellar PSF, and a ~1000 to ~9000 PSF-subtracted reduction, depending on the size of the coronagraphic spot and the wavelength. The ACS grism has a position dependent dispersion with an average value of 3.95 nm/pixel. The average resolution λ/Δλ for stellar sources is 65, 87, and 78 at wavelengths of 594 nm, 802 nm, and 978 nm.
The Advanced Camera for the Hubble Space Telescope will have three cameras. The first, the Wide Field Camera, will be a high throughput (45% at 700 nm, including the HST optical telescope assembly), wide field (200' X 204'), optical and I-band camera that is half critically sampled at 500 nm. The second, the High Resolution Camera (HRC), is critically sampled at 500 nm, and has a 26' X 29' field of view and 25% throughput at 600 nm. The HRC optical path will include a coronagraph which will improve the HST contrast near bright objects by a factor of approximately 10. The third camera is a far ultraviolet, Solar-Blind Camera that has a relatively high throughput (6% at 121.6 nm) over a 26' X 29' field of view. The Advanced Camera for Surveys will increase HST's capability for surveys and discovery by at least a factor of ten.
A design for an advanced camera (AC) third-generation Hubble Space Telescope scientific instrument is discussed. The AC is a three-channel spectrophotometric camera with wavelength sensitivity from 115-1000 nm. The AC, if selected, would be launched in 1999 for installation on HST. The axial bay design incorporates optical correction for the aberrated HST primary mirror and evolutionary advances in imaging capability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.