BAE Systems continues to make dramatic progress in uncooled microbolometer sensors and applications. This paper
will review the latest advancements in microbolometer technology at BAE Systems, including the development status of
17 micrometer pixel pitch detectors and imaging modules which are entering production and will be finding their way
into BAE Systems products and applications. Benefits include increased die per wafer and potential benefits to SWAP
for many applications. Applications include thermal weapons sights, thermal imaging modules for remote weapon
stations, vehicle situational awareness sensors and mast/pole mounted sensors.
BAE Systems continues to advance the technology and performance of microbolometer-based thermal imaging modules and systems. 640x480 digital uncooled infrared focal plane arrays are in full production, illustrated by recent production line test data for two thousand focal plane arrays. This paper presents a snapshot of microbolometer technology at BAE Systems and an overview of two of the most important thermal imaging sensor programs currently in production: a family of thermal weapons sights for the United States Army and a thermal imager for the remote weapons station on the Stryker vehicle.
This paper describes the inherent advantages of IR uncooled imagers in general, and the SCC500 in particular, for homeland defense. The SCC500 is a small, lightweight, low power, high performance uncooled imager that began production shipments in the spring of 2003. Key technologies described are dynamic range control, contrast enhancement and electronic zoom. Availability of these advanced features in production products are also described.
BAE Systems has made dramatic progress in uncooled microbolometer sensors and applications in the last year. The topics covered in this paper are: results and video from our latest 640x480 FPAs with sensitivities of better than 50 mK (f/1) and overviews of systems for military and commercial applications.
Starting in the early 1990’s, BAE SYSTEMS began a significant investment in the development of MicroIR Uncooled Microbolometers. 160 x 120, 320 x 240, and 640 x 480 focal plane array (FPA) technology advances in both large pixel and small pixel format have driven Noise Equivalent Temperature Difference (NETD), power, size, weight, and price lower. These improvements have resulted in many new applications that previously could not afford larger, heavier, costlier cooled systems. While advancements in state of the art performance have been published regularly at Aerosense and other industry forums, far less has been discussed on the performance advances that have occurred as a result of volume manufacturing. This paper describes the improvements in performance that have been a result of BAE SYSTEMS leadership position in MicroIR microbolometer manufacturing. With over 15,000 units shipped through 2002, ranging from Standard Imaging Modules (SIM) to Standard Camera Cores (SCC) to complete imaging systems, the cumulative expertise gathered from this manufacturing experience over the past seven years has also pushed the state of the art system performance, in ways that single/small quantity technology demonstrators never could. Comparisons of temporal NETD, spatial NETD, dynamic range, operability, throughput, capacity, and other key metrics from early manufacturing lots to the present will be presented to demonstrate the advances that can only be achieved through volume manufacturing.
A new 4th generation MicroIR architecture is introduced as the latest in the highly successful Standard Camera Core (SCC) series by BAE SYSTEMS to offer an infrared imaging engine with greatly reduced size, weight, power, and cost. The advanced SCC500 architecture provides great flexibility in configuration to include multiple resolutions, an industry standard Real Time Operating System (RTOS) for customer specific software application plug-ins, and a highly modular construction for unique physical and interface options. These microbolometer based camera cores offer outstanding and reliable performance over an extended operating temperature range to meet the demanding requirements of real-world environments. A highly integrated lens and shutter is included in the new SCC500 product enabling easy, drop-in camera designs for quick time-to-market product introductions.
320×240 and 640×480 small pixel uncooled microbolometer focal plane arrays have been developed that reduce overall sensor size, weight, power consumption, and cost. At the same time, these sensors still provide the high quality image resolution needed for target recognition and identification. These newly developed small uncooled thermal imaging sensors are being demonstrated in several attended and unattended sensor applications that include Unattended Ground Sensors, Micro Air Vehicles, and Infrared Helmet Sights. This paper describes recent developments at BAE SYSTEMS in uncooled microbolometer sensor technology for unattended sensor applications and presents the latest performance and image data for our 2nd generation systems.
Sanders IR Imaging Systems (IRIS), a Lockheed Martin Company, has made recent improvements in high performance uncooled IR focal plane arrays and systems. This paper provides performance results for three of these new FPAs and systems. First we discuss a new 320 X 240, 46 micrometer pitch FPA, which when put into a system with a transmission of 74%, will provide a system NETD of < 26 mK (F/0.8, 60 Hz). This FPA has a power of < 250 mW (which includes on-chip 14 bit analog to digital conversion), and virtually no crosstalk from saturation. Second, we discuss the first ever 640 X 480 element uncooled IR camera. This camera, which is based on a 28 micrometer pitch microbolometer staring FPA, produces a system sensitivity of < 150 mK, (F/1, 30 Hz) and has a Minimum Resolvable Temperature Difference of < 0.4 degrees Celsius at the Nyquist frequency. Finally, we have developed a new lightweight thermal weapons sight (TWS). Our TWS, which weighs < 3 lbs. (with battery) and operates over the -37 degrees Celsius to +49 degrees Celsius temperature range, has demonstrated a boresight retention of < 0.2 mrad after 1000's of rounds were fired.
Lockheed Martin IR Imaging Systems is developing low cost, high performance, uncooled IR imaging products for both military and commercial applications. These products are based on microbolometer technology, a silicon micromachined sensor that combines wafer level silicon processing with a device structure capable of yielding excellent imaging performance. Here, in the third of a series of papers, we report on several applications that are utilizing the Lockheed Martin microbolometer sensor. The performance of our basic uncooled sensor has been measured to determine sensor capabilities for insertion into both military and commercial products. Non-linearity of the sensor over a scene temperature range of 95 degrees C is less than 0.5 percent. Our sensor typically have temporal NETDs of less than 70 mK as well as spatial NETDs of less than 50 mK, with an instantaneous dynamic range of 84 dB, and a total dynamic range of 120 dB. MRTD performance is less than 0.4 degrees C at spatial frequencies more than 20 percent beyond Nyquist. Spatial noise variation over time has been measured and found to meet both commercial and military requirements with excellent spatial noise over wide scene and ambient temperature ranges. Some of the multiple applications in which our uncooled sensor have been used have been described in reports demonstrating the varied and unique uses of this product. Our sensor is now used by dozens of partners and customers for applications ranging from hand-held radiometric camera to driving aids; from long range surveillance cameras to miniature cameras; from rifle sights to helmet mounted camera. These applications will be discussed along with their unique system level performance parameters. Video will be used to demonstrate the various applications discussed.
Lockheed Martin IR Imaging Systems is developing low cost, high performance, uncooled infrared imaging products for both military and commercial applications. These products are based on microbolometer technology, a silicon micromachined sensor that combines wafer level silicon processing with a device structure capable of yielding excellent imaging performance. Here, in the first of a series of papers, we report on several applications that are utilizing the Lockheed Martin microbolometer sensor. The performance of our basic uncooled sensor has been measured (and reported in multiple papers) to determine sensor capabilities for insertion into both military and commercial products. Non-linearity of the sensor over a scene temperature range of 95 degrees Celsius is less than 0.5%. Our sensors typically have temporal NETDs of less than 70 mK as well as spatial NETDs of less than 50 mK. MRTD performance is less than 0.4 degrees Celsius at spatial frequencies more than 20% beyond Nyquist. Spatial noise variation over time has been measured and found to meet both commercial and military requirements with excellent spatial noise over wide scene and ambient temperature ranges. Some of the multiple applications in which our uncooled sensors have been used have just recently been described in one report demonstrating the varied and unique uses of this product. Our sensor is now used by dozens of partners and customers for applications ranging from hand-held radiometric cameras to driving aids; from driver's aids to miniature cameras from rifle sights to radiometers. These applications will be discussed along with their unique system level performance parameters. Video will be used to demonstrate the various applications discussed.
Lockheed Martin IR Imaging Systems is developing low cost, high performance, uncooled infrared imaging products for both military and commercial applications. These products are based on microbolometer technology, a silicon micromachined sensor that combines wafer level silicon processing with a device structure capable of yielding excellent imaging performance. Here, in the first of a series of papers, we report on several applications that are utilizing the Lockheed Martin microbolometer sensor. The performance of our basic uncooled sensor has been measured (and reported in multiple papers) to determine sensor capabilities for insertion into both military and commercial products. Non-linearity of the sensor over a scene temperature range of 95 degrees Celsius is less than 0.5%. Our sensors typically have temporal NETDs of less than 70 mK as well as spatial NETDs of less than 50 mK. MRTD performance is less than 0.4 degrees Celsius at spatial frequencies more than 20% beyond Nyquist. Spatial noise variation over time has been measured and found to meet both commercial and military requirements with excellent spatial noise over wide scene and ambient temperature ranges. However, the multiple applications in which our uncooled sensors have been used have never been described in one report demonstrating the varied and unique uses of this product. Our sensor is now used by dozens of partners and customers for applications ranging from hand-held radiometric cameras to driving aids; from sniper location prototype cameras to helmet mounted mine detection sensors; from rifle sights to space sensors. These applications will be discussed along with their unique system level performance parameters. Video will be used to demonstrate the various applications discussed.
Lockheed Martin IR Imaging Systems is developing low cost, high performance, uncooled infrared imaging products for both military and commercial applications. These products are based on the microbolometer technology, a silicon micromachined sensor that combines wafer level silicon processing with a device structure capable of yielding excellent imaging performance. Here we report on the latest technical improvements and performance of an uncooled sensor as measured through laboratory and field testing. The performance of our uncooled sensor has been measured to determine sensor capabilities for insertion into both military and commercial products. Linearity of the sensor over a scene temperature range of 95 degrees Celsius is less than 0.5%. Our sensors typically have temporal NETDs of less than 70 mK as well as spatial NETDs of less than 50 mK. MRTD performance is less than 0.4 degrees Celsius at spatial frequencies more than 20% beyond Nyquist. Sensor stability over time has been measured and found to meet both commercial and military requirements. Spatial noise over a wide scene temperature range is reported as well as other test results. Video is used to demonstrate sensor performance capabilities in a variety of applications.
Uncooled infrared imaging technology provides a new, affordable, high performance tool for both conventional and emerging applications in the surveillance and law enforcement markets. This technology offers users significant advantages, including high reliability, low power consumption, excellent image clarity, and good performance in adverse environments. This paper briefly discusses the various technologies used for night imaging, the advantages that infrared systems offer law enforcement and surveillance applications, how uncooled infrared systems fit into this market, and the status of uncooled microbolometer systems at Lockheed Martin.
Loral Infrared & Imaging Systems is developing low cost, high performance, uncooled infrared imaging products for both military and commercial applications. These products are based on the microbolometer technology, a silicon micromachined sensor which combines the wafer level silicon processing with a device structure capable of yielding excellent infrared imaging performance. Here, we report on the development of an uncooled sensor, the LTC500, which incorporates an all digital focal plane array and has a measured NETD of less than 70 mK. The focal plane array and the electronics within the LTC500 have been designed as an integrated unit to meet a broad range of end user applications by providing features such as nonuniformity correction, autogain and level, NTSC video, and digital outputs. The 327 X 245 element focal plane array has a 46.25 micrometers pixel pitch and an on focal plane array 14 bit to analog to digital converter (ADC). The ADC has a measured instantaneous dynamic range of more than 76 dB at a 6.1 MHz output data rate and 60 Hz frame rate. The focal plane array consumes less than 500 mW of power, of which less than 250 mW is used in the ADC. An additional 36 dB of digital coarse offset correction in front of the ADC on the focal plane array results in a total electronic dynamic range of 112 dB. The MRT of the LTC500 camera has been measured at less 0.2 C at fo.
Loral Infrared & Imaging Systems is developing low cost, high performance uncooled infrared imaging products for both military and commercial applications. These products are based on the microbolometer technology, a silicon micromachined sensor which combines the wafer level silicon processing with a device structure capable of yielding NETD performance of better than 40 mK. To achieve a low cost sensor, Loral is proceeding with an integrated approach to the design and manufacturing processes associated with each major element of the uncooled sensor: focal plane array, electronics, optics and housings. Loral's 327 by 245 focal plane array has a 46.25 micrometer pixel pitch and incorporates a CMOS readout integrated circuit (ROIC). The ROIC has been designed to greatly simplify the external electronics, and features a single output which can operate at both 60 Hz (NTSC) and 50 Hz (PAL) video rates. The sensor electronics have been designed to meet a broad range of end user applications by providing both analog video and digital outputs with a large selection of user definable options and operating modes. To achieve low manufacturing costs across multiple end user applications, common optical interfaces, structural components, and manufacturing processes are being utilized. Sensor NETD is projected to be 40 mK normalized to f/1 and a 30 Hz frame rate. MRT is projected to be better than 0.1 degree Celsius at f0.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.