Electrical engineers and physicists are naturally very interested
in noise in circuits, amplifiers and detectors. With the advent of
quantum computation and other high frequency electronics operating
at low temperatures, we have entered a regime where quantum noise
and quantum-limited detectors are important. Here we describe the
general concept of a two-level system as a quantum spectrum
analyzer and apply it to a simple superconducting qubit, the
Cooper-pair box. We then discuss the coupling of a Cooper-pair box
to its electromagnetic environment, whose noise leads to a finite
polarization and excited-state lifetime of the qubit. Finally, we
describe a theoretical technique for treating a qubit coupled to a
measurement system, which allows one to calculate the full quantum
noise of the measurement device. We present results for such a
calculation for the case of a normal SET.
We are developing superconducting direct detectors for submillimeter astronomy that can in principle detect individual photons. These devices, Single Quasiparticle Photon Counter (SQPC), operate by measuring the quasiparticles generated when single Cooper-pairs are broken by absorption of a submillimeter photon. This photoconductive type of device could yield high quantum efficiency, large responsivity, microsecond response times, and sensitivities in the range of 10-20 Watts per root Hertz. The use of antenna coupling to a small absorber also suggests the potential for novel instrument designs and scalability to imaging or spectroscopic arrays. We will describe the device concept, recent results on fabrication and electrical characterization of these detectors, issues related to saturation and optimization of the device parameters. Finally, we have developed practical readout amplifiers for these high-impedance cryogenic detectors based on the Radio-Frequency Single-Electron Transistor (RF-SET). We will describe results of a demonstration of a transimpedance amplifier based on closed-loop operation of an RF-SET, and a demonstration of a wavelength-division multiplexing scheme for the RF-SET. These developments will be a key ingredient in scaling to large arrays of high-sensitivity detectors.
Superconductive hot-electron bolometer (HEB) mixers have been built and tested in the frequency range from 1.1 THz to 2.5 THz. The mixer device is a 0.15 - 0.3 micrometer microbridge made from a 10 nm thick Nb film. This device employs diffusion as a cooling mechanism for hot electrons. The double sideband noise temperature was measured to be less than or equal to 3000 K at 2.5 THz and the mixer IF bandwidth is expected to be at least 10 GHz for a 0.1 micrometer long device. The local oscillator (LO) power dissipated in the HEB microbridge was 20 - 100 nW. Further improvement of the mixer characteristics can be potentially achieved by using Al microbridges. The advantages and parameters of such devices are evaluated. The HEB mixer is a primary candidate for ground based, airborne and spaceborne heterodyne instruments at THz frequencies. HEB receivers are planned for use on the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) and the ESA Far Infrared and Submillimeter Space Telescope (FIRST). The prospects of a submicron-size YBa2Cu3O7-(delta ) (YBCO) HEB are discussed. The expected LO power of 1 - 10 (mu) W and SSB noise temperature of approximately equals 2000 K may make this mixer attractive for various remote sensing applications.
We report on the development of quasioptical Nb hot-electron bolometer mixers for heterodyne receivers operating at 1 THz 3 THz. The devices have submicron in-plane sizes, thus exploiting diffusion as the electron cooling mechanism. Quasioptical mixer circuits have been developed with planar double-dipole or twin-slot antennas. The measured (DSB) receiver noise temperatures are 1670 K at 1.1 THz, with an estimated mixer noise temperature of approximately equals 1060 K, and 2750 K at 2.5 THz, with an estimated mixer noise temperature of approximately equals 900 K. The IF bandwidth is found to scale as the length-squared, and bandwidths as high as 8 GHz have been measured. These results demonstrate the low-noise, broadband operation of the diffusion-cooled bolometer mixer over a wide range of far-infrared wavelengths.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.