The evidence of excess noise in the power spectrum of many natural systems that span over the mHz to the THz, such as
biological system, superconductors at dendritic regime, Barkhausen noise of magnetic system and plasma emission from
nanometric transistors, was observed and related to a class of statistical models of correlated processes. Intrinsic or
induced fluctuations of the elementary processes taking place in transport phenomena couple each other giving rise to
time-amplitude correlated avalanches. TES sensors for X-ray microcalorimeters have shown a clear evidence that this
excess noise has typical spectral behavior spanning from 100 Hz to 10 kHz. We present an analysis of the excess noise
using this statistical avalanche model of TES operating on Si substrate and suspended SiN membrane.
Outstanding topic on noise phenomena is the occurrence of peaks in the wide frequency range from mHz to above MHz in the power spectra of many natural systems. Recently, the challenging interest has oriented to focus the spectral peaks superimposed to the 1/f noise. Until now, all existing theories failed to explain peaked spectra. Here we highlight the role of correlation among avalanches as the main source of the noise peaks observed. The present theory is based on first principle statistics of elementary events clustered in
time-amplitude correlated avalanches. A spectral power master equation suitable to explain peaked noise spectra arising from avalanche correlations is achieved analytically. Excellent agreement with our experiments in superconductors and with experiments in Escherichia coli, in single DNA molecule and in single electron tunneling is reported. Our statistical model shows that avalanche correlation gives wide peaks in the power spectrum superimposed to the 1/f behavior with high slope, a typical signature of avalanche processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.