KEYWORDS: Actuators, Microsoft Foundation Class Library, Semiconducting wafers, Aluminum, Amplifiers, Manufacturing, Reliability, Electrodes, Packaging, Power supplies
A comparison of different commercially available packaged piezoelectric actuators is presented. The comparisons are based on force, stress and strain performance at similar field densities. A new metric of comparison, based on energy efficiency, is introduced. This paper provides designers with useful information on actuators and actuator performance for industrial applications. The QuickPack and PowerAct actuators remain the only packaged piezoelectric actuators to be produced in high volume and to feature in commercial applications.
With the advent of 193 nm systems processing 300 mm wafers, the production lithography cell is about to undergo a technology shift. The mechanism for delivering the beam from the light source to the illumination system, here referred to as a Beam Delivery Unit (BDU), must change to meet the challenges imposed by this shift. To support these changes, Cymer is developing a BDU that will guarantee a stable beam at the scanner entrance during exposure. The beam stabilization control system has been implemented in a test BDU. We shall present results from experiments that demonstrate our ability to significantly improve short and long term “Beam Stability”.
Excimer laser light sources for photolithography are subject to a cycle of ever-tightening precision requirements, dictated by the design-rule shrinks planned into the industry roadmap. But pulse-to-pulse stability of the center wavelength of the emitted light is limited by the presence of vibration in key components and structures. This paper covers the application of Active Vibration Control (AVC) technology to an excimer laser to mitigate the effects unwanted vibration, and enable compliance with anticipated future stability specifications. The laser system is described, from a structural-dynamics point of view. A systematic approach to vibration diagnostics is presented, with experimental results to support key conclusions regarding the types and sources of vibrations. Next, analytical assessment of active control performance is discussed, followed by breadboard-type implementation results showing reductions of > 30% in a key stability performance metric.
Several sports are based upon a tool (club, bat, stick) striking an object (ball, puck) across a field of play. Anytime two structures collide, vibration is created by the impact of the two. The impact of the objects excites the structural modes of the tool, creating a vibration that can be felt by the player, especially if the hit is not at a `sweet spot'. Vibration adversely affects both feel and performance. This paper explains how piezoelectric dampers were developed to reduce vibration and improve the feel of ball-impact sporting goods such as golf clubs. The paper describes how the dynamic characteristics of a golf club were calculated, at first in the free-free condition, and then during its operation conditions (the swing of the club, and the impact with the ball). The dynamic characteristics were used to develop a damper that addressed a specific, or multiple, modes of interest. The damper development and testing are detailed in this paper. Both objective laboratory tests and subjective player tests were performed to evaluate the effectiveness of the piezoelectric dampers. The results of the tests, along with published medical data on the sensitivity of the human body, were used to draw a correlation between human feel and vibration reduction.
KEYWORDS: Finite element methods, Vibration control, Control systems, Prototyping, Resistors, Modal analysis, Data modeling, Analytical research, Semiconducting wafers, Lead
This paper explains how piezoelectric devices can be used to control vibrations in a snowboard. Furthermore the details of the approach, testing, design and analysis of a piezoelectric damper applied to a production snowboard are described here. The approach consisted of determining the principal modes of vibration of a snowboard during its operation (on-slope). This information was used to develop a finite element model of the structure. The finite element model was used to find the areas of higher strain energy where a piezoelectric device could be applied and be effective in reducing undesired vibrations. Several prototype piezoelectric dampers were built, applied to snowboards and tested on snow. The proper amount of damping was selected by the test riders, so that a configuration could be selected for production of the 1998 K2 Electra snowboard. The piezoelectric damper selected reduced the snowboard vibration by 75% at the mode to which it was tuned, allowing for a smoother ride and a more precise control of the snowboard in any kind of snow condition.
KEYWORDS: Control systems, Actuators, Analytical research, Wind measurement, Skin, Algorithm development, Smart materials, Control systems design, Aerodynamics, Wind energy
Buffeting is an aeroelastic phenomenon that plagues high performance aircraft, especially those with twin vertical tails. Unsteady cortices emanate form wing/fuselage leading edge extensions when these aircraft maneuver at high angles of attack. These aircraft are designed such that the vortices shed while maneuvering at high angels of attack and improve the lift-to-drag ratio of the aircraft. With proper placement and sizing of the vertical tails, this improvement may be maintained without adverse effects to the tails. However, there are tail locations and angels of attack where these vortices burst and immerse the vertical tails in their wake inducing severe structural vibrations. The resulting buffet loads and severe vertical tail response because an airframe life and maintenance concern as life cycle costs increased. Several passive methods have been investigated to reduce the buffeting of these vertical tails with limited success. As demonstrated through analyses, wind-tunnel investigations, and full-scale ground tests, active control system offer a promising solution to alleviate buffet induced strain and increase the fatigue life of vertical tails. A collaborative research project including the US, Canada, and Australia is in place to demonstrate active buffet load alleviation systems on military aircraft. The present paper provides details on this collaborative project and other research efforts to reduce the buffeting response of vertical tails in fighter aircraft.
Using recent advances in small, surface-mount electronics, coupled with proprietary packaging techniques, ACX has developed the SmartPackTM. The design and realization of this self-contained, active piezoelectric control device are described in this paper. The SmartPack uses a local control architecture, consisting of two parallel, analog, positive position feedback (PPF) filters, along with nearly collocated piezo strain sensors and actuators, to control multiple structural vibration modes. A key issue is the management of waste heat from the power electronics required to drive the piezo actuators. This issue is addressed through thermal/electrical modeling of the packaged amplifier. The effectiveness of the device is demonstrated through multi-mode active damping on a 24 inch square plate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.