C. Spezzani, E. Ferrari, E. Allaria, F. Vidal, L. Lounis, A. Ciavardini, R. Delaunay, F. Capotondi, E. Pedersoli, M. Coreno, C. Svetina, L. Raimondi, M. Zangrando, R. Ivanov, I. Nikolov, A. Demidovich, M. Danailov, G. De Ninno, H. Popescu, M. Eddrief, M. Kiskinova, M. Sacchi
Magnetization control without applying magnetic fields has potential for applications in sensors and devices. In Fe/MnAs/GaAs(001), the Fe magnetization can be modified by acting on the MnAs microstructure via temperature control, without applying external magnetic fields. Here we use an optical laser pulse to vary the local temperature and an x-ray free-electron laser pulse to probe the induced magnetic and structural dynamics in a time-resolved resonant scattering experiment, both pulses having ~100 fs duration. Modifications of the MnAs microstructure take place within a few ps, followed by a slower dynamics driven by thermal diffusion. We show that a single optical laser pulse can reverse the Fe magnetization locally, the process being driven not by the fast modifications of the MnAs structure, but rather by its slower return to equilibrium.
SwissFEL is the Free Electron Laser (FEL) facility under construction at the Paul Scherrer institute (PSI), aiming to provide users with X-ray pulses of lengths down to 2 femtoseconds at standard operation. The measurement of the length of the FEL pulses and their arrival time relative to the experimental laser is crucial for the pump-probe experiments carried out in such facilities. This work presents a new device that measures hard X-ray FEL pulses based on the THz streak camera concept. It describes the prototype setup called pulse arrival and length monitor (PALM) developed at PSI and tested in Spring-8 Angstrom Compact Free Electron Laser (SACLA) in Japan. Based on the first results obtained from the measurements, we introduce the new improved design of the second generation PALM setup that is currently under construction and will be used in SwissFEL photon diagnostics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.