Proceedings Article | 17 April 2012
U. Okoroanyanwu, J. Heumann, X. Zhu, C. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt
KEYWORDS: Photomasks, Inspection, Semiconducting wafers, Optical inspection, Extreme ultraviolet, Reflectivity, Defect detection, Mirrors, Scanning electron microscopy, Defect inspection
Pending the availability of actinic inspection tools, optical inspection tools with 193 nm DUV
illumination wavelength are currently used to inspect EUV masks and EUVL-exposed wafers.
Due to strong optical absorption, DUV photons can penetrate only a few surface layers of EUV
masks, making them sub-optimal for detecting hidden defects embedded within the sub-layers of
the mask, the so-called phase defects. Although these phase defects may not be detected by
optical inspection tools, they may print on the wafer. Conversely, false and nuisance defects
which may not print on the wafer may be detected by optical inspection tools, and by so doing,
degrade the inspection sensitivity of the tool to real and critical defects. This paper discusses
approaches to optimizing the optical inspection sensitivity of EUV masks, with a view to
overcoming some of the absorption limitations of the inspection wavelength and also with a view
to enhancing the imaging contrast of the reflected light between the low reflective absorber/antireflection
coating stack and the moderately reflective mirror surface of Mo/Si bilayers, capped
with a thin Ru layer, and which serves to protect the mirror surface from damage and
contamination during mask fabrication and wafer printing processes. The effects of mask
absorber/ARC stack thickness on optical inspection contrast are simulated using rigorous
coupled wave analysis (RCWA), and compared to experimental results. EUV masks with thin
absorber/ARC stacks are observed to have higher inspection contrast, up to 15 % higher than
their thicker counterparts, especially as the feature pitch gets smaller. Blank defect inspection
performance of tools such as the Siemens DFX40 tool and KLA 617 Teron tool equipped with
Phasur module are compared, and correlated with patterned mask inspection data generated from
KLA 617 Teron tool. Patterned mask defect sensitivities to the tune of 40 nm and 90 nm were
obtained on thin and thick absorber/ARC stacks, respectively. The defect location accuracy of
the Teron 617 tool is better than 250 nm (3σ), while the alignment repeatability of the Teron 617
on the fiducials is better than 60 nm (3σ). Printability of mask blank and patterned mask defects
on exposed wafers in terms of what and where the defects print, are also presented. Four masks
with different absorber and antireflection coating thicknesses, some with substrate and absorber programmed defects of different types and sizes, were fabricated and used to expose resistcoated
SiN substrate wafers on full field ASML EUV scanners.