Motivated by previous successes in the development of two-dimensional (2D) based electronic nose, we investigate the potential application of metal-decorated phosphorene-based sensor for detection of formaldehyde using density functional theory (DFT) and nonequilibrium Green’s function (NEGF) methods. The most stable adsorption configurations, adsorption sites, adsorption energies, charge transfer, and electronic properties of formaldehyde on the pristine and Pd-decorated phosphorene are studied. Our results indicate that formaldehyde is chemisorbed on Pd-decorated phosphorene via strong covalent bonds, and quick recovery time (3.58 sec) under UV exposure and at the temperature of 350 K, suggesting its potential application for gas sensors. The results reveal that Pd-decorated phosphorene can detect formaldehyde with high sensitivity of 3.8 times greater than pristine phosphorene. Our results demonstrate the potential application of phosphorene for detection of formaldehyde as an important lung cancer biomarker.
In this paper, an auxetic design is proposed for the flexible membrane of a piezoelectric pulse sensor and computationally analyzed for a high-sensitivity vibration sensing in micro electro-mechanical system (MEMS). Auxetics are metamaterial structures with negative Poisson’s ratio which enables sensor’s flexible diaphragm to be expanded in both longitudinal and transverse directions easily. The sensitivity of a pulse sensor with an auxetic membrane was studied and compared to an equivalent plain membrane when the substrate was under harmonic bending. The sensing response was determined for the both models using detailed Finite Element Model (FEM) simulations. The sensor with the auxetic membrane demonstrated excellent sensitivity output over a harmonic pressure input which shows its strong potential for high-sensitive MEMS sensing applications. A detailed fabrication process is also discussed.
Ambient energy harvesting is a promising route to achieve self-powered electronic devices. A nanogenerator scavenges mechanical energy from surrounding and converts it into electrical energy to supply power to a self-powered system. Using piezoelectric, thermoelectric, and triboelectric effects, several nanogenerators have been developed. Piezoelectric nanogenerators harvest kinetic energy to provide power for portable and small electronics. The kinetic energy generated from human body motions is an excellent energy source to power wearable devices. Biocompatibility, flexibility, high efficiency, and small volume are the main attributes for applications related to the human body. Piezoelectric nanogenerators based on thin films are desirable for their ability to scavenge irregular mechanical energies from bending. The power generation mechanism of a thin film based piezoelectric nanogenerator is determined by the coupled piezoelectric and semiconducting properties of the thin film.
ZnO is an appealing material for piezoelectric nanogenerators thanks to its coupling effect of semiconducting and piezoelectrical properties, extremely high elasticity, high power density, low-cost and controlled growth, and biocompatibility. Herein, a flexible piezoelectric nanogenerator with ZnO nanoflakes-polyethylene terephthalate (PET) is reported. The direct synthesis of ZnO nanoflakes on flexible PET substrate was achieved via a simple, fast, low-temperature, low-cost, highly stable, and reproducible sonochemical method. The synthesized ZnO thin films were characterized in detail. The results show that ZnO nanoflakes were grown with high purity and highly crystallinity along [0001] direction. Our piezoelectric device generated a peak voltage of 62 mV with great reproducibility (p-value of 0.0212). The fabrication of ZnO nanoflakes-PET piezoelectric nanogenerators helps us to develop more flexible and bio-compatible nanogenerators particularly self-powered wearable electronics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.