AIRS is the infrared spectroscopic instrument of ARIEL: Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey mission selected in March 2018 as the Cosmic Vision M4 ESA mission and planned to be launched in 2029 by an Ariane 6 from Kourou toward a large amplitude orbit around L2 for a 4 year mission. Within the scientific payload, AIRS will perform transit spectroscopy of over a 1000 of exoplanets to complete a statistical survey, including gas giants, Neptunes, super-Earths and Earth-size planets around a wide range of host stars. All these collected spectroscopic data will be a major asset to answer the key scientific questions addressed by this mission: what are the exoplanets made of? How do planets and planetary system form? How do planets and their atmospheres evolve over time? The AIRS instrument is based on two independent channels covering the CH0 [1.95-3.90] µm and the CH1 [3.90-7.80] µm wavelength range with prism-based dispersive elements producing spectrum of low resolutions R<100 in CH0 and R<30 in CH1 on two independent detectors. The spectrometer is designed to provide spectrum Nyquist-sampled in both spatial and spectral directions to limit the sensitivity of measurements to the jitter noise and intra pixels pattern during the long (10 hours) transit spectroscopy exposures. A full instrument overview will be presented covering the thermal mechanical design of the instrument functioning in a 60 K cold environment, up to the detection and acquisition chain of both channels based on 2 HgCdTe detectors actively cooled down below 42 K. This overview will present updated information of phase B2 studies in particular with the early manufacturing of prototype for key elements like the optics, focal-plane assembly and read-out electronics as well as the results of testing of the IR detectors up to 8.0 μm cut-off.
METIS is one of the first three instruments for the ELT, Europe’s next-generation ground-based telescope. It will offer imaging, coronagraphy and spectroscopy in the L, M and N bands for general-purpose science in astrophysics. Among its main science drivers are circumstellar disks and extrasolar planets observations, which requires demanding high contrast imaging techniques. In that framework, METIS will be equipped with state-of-the-art phase mask coronagraphs: Apodizing Phase Plate (APP) and Annular Grooves Phase Mask (AGPM). Manufacturing the AGPM coronagraphs is a complex process that requires performance assessment with specific testing before implementation into the instrument. At Department of Astrophysics (CEA Saclay, France), responsible for the testing of the N-band AGPMs, a previously available test bench with a telescope simulator and cryogenic facility has been upgraded to comply with the AGPM tests requirements. This paper presents these requirements and describes the test bench design adopted. Then, based on preliminary results, we discuss the original solutions that permitted to reach our goals.
KEYWORDS: Sensors, Mercury cadmium telluride, Infrared detectors, Radiation effects, Short wave infrared radiation, Space operations, Pollution, Monte Carlo methods, Luminescence, Renewable energy
Experimental study of the influence of the CdZnTe substrate thickness on the response of IR detectors under irradiation has been performed. Two detectors, with different substrate thickness 800 μm and 50 μm, were submitted to low flux 62 MeV proton irradiation.Images acquired under irradiation were analyzed. Whereas the detector with 800 μm substrate thickness has shown background signal increase under irradiation, the detector with the substrate partially removed has not shown any background signal elevation. The elevation of the background signal under irradiation in the detector with intact substrate is attributed to the large extension of one transient event as reveal by the derivation of one transient event. The results of the irradiation campaign are further compared to simulations. This comparison shows very good agreement and highlights the role of emission of low energy photons inside the substrate which are in turn detected by the light sensitive layer.
We report on the development of short wave infrared (SWIR) imaging arrays for astronomy and space observation in Europe. LETI and Sofradir demonstrated 640×480 SWIR HgCdTe (MCT) arrays geared at low flux, low dark noise operation. Currently, we are developing 2048×2048 arrays mated to a newly developed ROIC. In parallel, the European Space Agency and the European Commission are funding the development and industrialization of 4" CdZnTe substrates and HgCdTe epitaxy. These large wafers are needed to achieve the necessary economies of scale and address the need for even larger arrays. HgCdTe SWIR detector performance at LETI/Sofradir is known from previous programs and will be discussed here. However, we will only be able to summarize the features and specifications of the new 2048×2048 detectors which are still at a prototype stage.
CEA and Sofradir have been involved for 7 years in studies related to a large format detector development for science and astronomy applications. These studies are linked with ESA's Near Infrared Large Format Sensor Array roadmap which aims to develop a 2Kx2K large format low flux low noise device. The ALFA (Astronomical Large Focal plane Array) detector is currently at design, manufacturing and validation phase at CEA and Sofradir. This paper will present the very last achievements of the ALFA development with a specific focus on the readout integrated circuit design itself. Features and specification of the 2048x2048 15μm pitch with Source Follower Detector (SFD) input stage will be described. Apart from ESA development, European Commission is also contributing to the large detector development thanks to ASTEROID (AStronomical TEchnology EuROpean Infrared detector Development) program founded by REA (Research European Agency). ASTEROID main objectives are to develop very large raw materials (CdZnTe substrate, HgCdTe epilayer…) compatible with the manufacturing of very large detectors in volume keeping the same level of performance. Organization and status of this program will be presented where high synergy with 2K² ALFA detector are included.
Infrared focal plane arrays (IRFPA) are widely used to perform high quality measurements such as spectrum acquisition at high rate, ballistic missile defense, gas detection, and hyperspectral imaging. For these applications, the fixed pattern noise represents one of the major limiting factors of the array performance. This sensor imperfection refers to the nonuniformity between pixels, and is partially caused by disparities of the cut-off wavenumbers. In this work, we focus particularly on mercury cadmium telluride (HgCdTe), which is the most important material of IR cooled detector applications. Among the many advantages of this ternary alloy is the tunability of the bandgap energy with Cadmium composition, as well as the high quantum efficiency. In order to predict and understand spectral inhomogeneities of HgCdTe-based IRFPA, we propose a modeling approach based on the description of optical phenomena inside the pixels. The model considers the p-n junctions as a unique absorbent bulk layer, and derives the sensitivity of the global structure to both Cadmium composition and HgCdTe layer thickness. For this purpose, HgCdTe optical and material properties were necessary to be known at low temperature (80K), in our operating conditions. We therefore achieved the calculation of the real part of the refractive index using subtracti
Infrared Focal Plane Arrays (FPA) are increasingly used to measure multi- or hyperspectral images. Therefore, it is crucial to control and modelize their spectral response. The purpose of this paper is to propose a modeling approach, adjustable by experimental data, and applicable to the main cooled detector technologies. A physical model is presented, taking into account various optogeometrical properties of the detector, such as disparities of the pixels cut-off wavelengths. It describes the optical absorption phenomenon inside the pixel, by considering it as a stack of optical bulk layers. Then, an analytical model is proposed, based on the interference phenomenon occurring into the structure. This model considers only the three major waves interfering. It represents a good approximation of the physical model and a complementary understanding of the optical process inside the structure. This approach is applied to classical cooled FPAs as well as to specific instruments such as Microspoc (MICRO SPectrometer On Chip), a concept of miniaturized infrared Fourier transform spectrometer, integrated on a classical Mercury-Cadmium-Telluride FPA, and cooled by a cryostat.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.