The ComPair balloon instrument is a prototype of the All-sky Medium Energy Gamma-ray Observatory (AMEGO) mission concept. AMEGO aims to bridge the spectral gap in sensitivity that currently exists from ∼100 keV to ∼100 MeV by being sensitive to both Compton and pair-production events. This is made possible through the use of four subsystems working together to reconstruct events: a double-sided silicon strip detector (DSSD) Tracker, a virtual Frisch grid cadmium zinc telluride (CZT) Low Energy Calorimeter, a ceasium iodide (CsI) High Energy Calorimeter, and an anti-coincidence detector (ACD) to reject charged particle backgrounds. Composed of 10 layers of DSSDs, ComPair’s Tracker is designed to measure the position of photons that Compton scatter in the silicon, as well as reconstruct the tracks of electrons and positrons from pair-production as they propagate through the detector. By using these positions, as well as the absorbed energies in the Tracker and 2 Calorimeters, the energy and direction of the incident photon can be determined. This proceeding will present the development, testing, and calibration of the ComPair DSSD Tracker and early results from its balloon flight in August 2023.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.