Structural Magnetic Resonance (MR) brain images should provide quantitative information about the stage and progression of Alzheimer’s disease. However, the use of MRI is limited and practically reduced to corroborate a diagnosis already performed with neuropsychological tools. This paper presents an automated strategy for extraction of relevant anatomic patterns related with the conversion from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) using T1-weighted MR images. The process starts by representing each of the possible classes with models generated from a linear combination of volumes. The difference between models allows us to establish which are the regions where relevant patterns might be located. The approach searches patterns in a space of brain sulci, herein approximated by the most representative gradients found in regions of interest defined by the difference between the linear models. This hypothesis is assessed by training a conventional SVM model with the found relevant patterns under a leave-one-out scheme. The resultant AUC was 0.86 for the group of women and 0.61 for the group of men.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.