We present the design and validation of a variable temperature cryogenic blackbody source, hereinafter called a cold load, that will be used to characterize detectors to be deployed by cosmic microwave background stage 4 (CMB-S4), the next-generation ground-based cosmic microwave background (CMB) experiment. Although cold loads have been used for detector characterization by previous CMB experiments, this cold load has three innovative design features: (1) the ability to operate from the 1-K stage of a dilution refrigerator (DR), (2) a He3 gas-gap heat switch to reduce cooling time, and (3) the ability to couple small external optical signals to measure detector optical time constants under low optical loading. The efficacy of this design was validated using a 150-GHz detector array previously deployed by the Spider experiment. Thermal tests showed that the cold load can be heated to temperatures required for characterizing CMB-S4’s detectors without significantly impacting the temperatures of other cryogenic stages when mounted to the DR’s 1-K stage. In addition, optical tests demonstrated that external signals can be coupled to a detector array through the cold load without imparting a significant optical load on the detectors, which will enable measurements of the CMB-S4 detectors’ optical time constants.
We present the design and validation of a variable temperature cryogenic blackbody source, hereinafter called a cold load, that will be used to characterize detectors to be deployed by CMB-S4, the next-generation ground-based cosmic microwave background (CMB) experiment. Although cold loads have been used for detector characterization by previous CMB experiments, this cold load has three novel design features: (1) the ability to operate from the 1 K stage of a dilution refrigerator (DR), (2) a 3He gas-gap heat switch to reduce cooling time, and (3) the ability to couple small external optical signals to measure detector optical time constants under low optical loading. The efficacy of this design was validated using a 150 GHz detector array previously deployed by the Spider experiment. Thermal tests showed that the cold load can be heated to temperatures required for characterizing CMB-S4’s detectors without significantly impacting the temperatures of other cryogenic stages when mounted to the DR’s 1 K stage. Additionally, optical tests demonstrated that external signals can be coupled to a detector array through the cold load without imparting a significant optical load on the detectors, which will enable measurements of the CMB-S4 detectors’ optical time constants.
We present the conceptual design of the modular detector and readout system for the Cosmic Microwave Background – Stage four (CMB-S4) ground-based survey experiment. CMB-S4 will map the cosmic microwave background (CMB) and the millimeter-wave sky to unprecedented sensitivity, using 500,000 superconducting detectors observing from Chile and Antarctica to map over 60% of the sky. The fundamental building block of the detector and readout system is a detector module package operated at 100 mK, which is connected to a readout and amplification chain that carries signals out to room temperature. It uses arrays of feedhorn-coupled orthomode transducers (OMT) that collect optical power from the sky onto dc-voltage-biased transition-edge sensor (TES) bolometers. The resulting current signal in the TESs is then amplified by a two-stage cryogenic Superconducting Quantum Interference Device (SQUID) system with a time-division multiplexer to reduce wire count, and matching room-temperature electronics to condition and transmit signals to the data acquisition system. Sensitivity and systematics requirements are being developed for the detector and readout system over wide range of observing bands (20 to 300 GHz) and optical powers to accomplish CMB-S4’s science goals. While the design incorporates the successes of previous generations of CMB instruments, CMB-S4 requires an order of magnitude more detectors than any prior experiment. This requires fabrication of complex superconducting circuits on over 10 m2 of silicon, as well as significant amounts of precision wiring, assembly and cryogenic testing
CMB-S4 – the next-generation ground-based cosmic microwave background (CMB) experiment - will significantly advance the sensitivity of CMB measurements and improve our understanding of the origin and evolution of the universe. CMB-S4 will deploy large-aperture telescopes fielding hundreds of thousands of detectors at millimeter wavelengths. We present the baseline optical design concept of the large-aperture CMB-S4 telescopes, which consists of two optical configurations: (i) a new off-axis, three-mirror, free-form anastigmatic design and (ii) the existing coma-corrected crossed-Dragone design. We also present an overview of the optical configuration of the array of silicon optics cameras that will populate the focal plane with 85 diffraction-limited optics tubes covering up to 9 degrees of field of view, up to 1.1 mm in wavelength. We describe the computational optimization methods that were put in place to implement the families of designs described here and give a brief update on the current status of the design effort.
The TolTEC camera is a next generation three-band imaging polarimeter for the Large Millimeter Telescope. With 7514 lumped element kinetic inductance detectors across three simultaneously observing passbands at 1.1 mm, 1.4 mm, and 2.0 mm, TolTEC has diffraction-limited beams with FWHM of 5, 7, and 11 arcsec, respectively. Herein, we cover a brief overview of the instrument along with the first quantitative measures of TolTEC’s performance at the LMT. We also provide initial reductions of commissioning targets - demonstrating TolTEC's ability to detect both faint and extended structures over a wide dynamic range of flux and angular scales.
The Advanced Atacama Cosmology Telescope Polarimeter is an upgraded receiver for the Atacama Cosmology Telescope, which has begun making measurements of the small angular scale polarization anisotropies in the Cosmic Microwave Background using the first of four new multichroic superconducting detector arrays. Here, we review all details of the optimization and characterization of this first array, which features 2012 AlMn transition- edge sensor bolometers operating at 150 and 230 GHz. We present critical temperatures, thermal conductivities, saturation powers, time constants, and sensitivities for the array. The results show high uniformity across the 150 mm wafer and good performance in the field.
The Advanced ACTPol (AdvACT) upgrade to the Atacama Cosmology Telescope features large arrays of mul- tichroic pixels consisting of two orthogonal-polarization pairs of superconducting bolometers at two observing frequency bands. We present measurements of the detector properties and noise data in a subset of a fielded multichroic array of AlMn transition-edge sensor (TES) detectors. In this array, the distribution of critical temperature Tc across detectors appears uniform at the percent level. The measured noise-equivalent power (NEP) distributions over ∼1200 detectors are consistent with expectations. We find median NEPs of 4.0×10-17 √Hz for low-band detectors and 6.2x10-17√Hz for high-band detectors under covered-window telescope test conditions with optical loading comparable to observing with precipitable water vapor ∼ 0.5 mm. Lastly, we show the estimated detector optical efficiency, and demonstrate the ability to perform optical characterization over hundreds of detectors at once using a cryogenic blackbody source.
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles.
The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first array of detectors for Advanced ACTPol, the next generation upgrade to ACTPol, will be deployed in 2016. We plan to continue using both techniques and compare them to astrophysical source measurements for the Advanced ACTPol polarization calibration.
The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroic
Transition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization
anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is
fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol.
Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and
readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next
generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed
assembly process of the first AdvACT detector array.
Advanced ACTPol (AdvACT) is an upgraded camera for the Atacama Cosmology Telescope (ACT) that will measure the cosmic microwave background in temperature and polarization over a wide range of angular scales and five frequency bands from 28-230 GHz. AdvACT will employ four arrays of feedhorn-coupled, polarization- sensitive multichroic detectors. To accommodate the higher pixel packing densities necessary to achieve Ad- vACT’s sensitivity goals, we have developed and optimized wideband spline-profiled feedhorns for the AdvACT multichroic arrays that maximize coupling efficiency while carefully controlling polarization systematics. We present the design, fabrication, and testing of wideband spline-profiled feedhorns for the multichroic arrays of AdvACT.
Advanced ACTPol is an instrument upgrade for the six-meter Atacama Cosmology Telescope (ACT) designed to
measure the cosmic microwave background (CMB) temperature and polarization with arcminute-scale angular
resolution. To achieve its science goals, Advanced ACTPol utilizes a larger readout multiplexing factor than any
previous CMB experiment to measure detector arrays with approximately two thousand transition-edge sensor
(TES) bolometers in each 150 mm detector wafer. We present the implementation and testing of the Advanced
ACTPol time-division multiplexing readout architecture with a 64-row multiplexing factor. This includes testing
of individual multichroic detector pixels and superconducting quantum interference device (SQUID) multiplexing
chips as well as testing and optimizing of the integrated readout electronics. In particular, we describe the new
automated multiplexing SQUID tuning procedure developed to select and optimize the thousands of SQUID
parameters required to readout each Advanced ACTPol array. The multichroic detector pixels in each array
use separate channels for each polarization and each of the two frequencies, such that four TESes must be read
out per pixel. Challenges addressed include doubling the number of detectors per multiplexed readout channel
compared to ACTPol and optimizing the Nyquist inductance to minimize detector and SQUID noise aliasing.
The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling ~ 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.
The Atacama Cosmology Telescope is a 6 meter diameter CMB telescope located at 5200 meters in the Chilean desert. ACT has made arc-minute scale maps of the sky at 90 and 150 GHz which have led to precise measurements of the fine angular power spectrum of the CMB fluctuations in temperature and polarization. One of the goals of ACT is to search for the B-mode polarization signal from primordial gravity waves, and thus extending ACT’s data analysis to larger angular scales. This goal introduces new challenges in the control of systematic effects, including better understanding of far sidelobe effects that might enter the power spectrum at degree angular scales. Here we study the effects of the gaps between panels of the ACT primary and secondary reflectors in the worst case scenario in which the gaps remain open. We produced numerical simulations of the optics using GRASP up to 8 degrees away from the main beam and simulated timestreams for observations with this beam using real pointing information from ACT data. Maps from these simulated timestreams showed leakage from the sidelobes, indicating that this effect must be taken into consideration at large angular scales.
In these proceedings, we summarize our in-field evaluation of temperature-to-polarization leakage associated with
the use of a continuously-rotating, ambient-temperature half-wave plate (HWP) on the Atacama B-Mode Search (ABS) experiment. Using two seasons of data, we demonstrate scalar leakage of ∼ 0.01%. This is consistent
with model expectations and an order of magnitude better than any previously-reported leakage. We constrain higher-order dipole and quadrupole leakage terms to be < 0.06% (95% confidence). Without any mitigation from scan cross-linking or boresight rotation, this corresponds to an upper limit on systematic errors in the tensor-to-scalar ratio r ;S 0.01. The HWP significantly reduces temperature-to-polarization leakage systematic errors for ABS and shows the promise of fast polarization modulation with HWPs for future experiments. Full details can be found in Ref. 1.
F. De Bernardis, J. Stevens, M. Hasselfield, D. Alonso, J. R. Bond, E. Calabrese, S. Choi, K. Crowley, M. Devlin, J. Dunkley, P. Gallardo, S. Henderson, M. Hilton, R. Hlozek, S. P. Ho, K. Huffenberger, B. Koopman, A. Kosowsky, T. Louis, M. Madhavacheril, J. McMahon, S. Næss, F. Nati, L. Newburgh, M. Niemack, L. Page, M. Salatino, A. Schillaci, B. Schmitt, N. Sehgal, J. Sievers, S. Simon, D. Spergel, S. Staggs, A. van Engelen, E. Vavagiakis, E. Wollack
In recent years there have been significant improvements in the sensitivity and the angular resolution of the instruments dedicated to the observation of the Cosmic Microwave Background (CMB). ACTPol is the first polarization receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky with arcmin resolution over 2000 sq. deg. Its upgrade, Advanced ACTPol (AdvACT), will observe the CMB in five frequency bands and over a larger area of the sky. We describe the optimization and implementation of the ACTPol and AdvACT surveys. The selection of the observed fields is driven mainly by the science goals, that is, small angular scale CMB measurements, B-mode measurements and cross-correlation studies. For the ACTPol survey we have observed patches of the southern galactic sky with low galactic foreground emissions which were also chosen to maximize the overlap with several galaxy surveys to allow unique cross-correlation studies. A wider field in the northern galactic cap ensured significant additional overlap with the BOSS spectroscopic survey. The exact shapes and footprints of the fields were optimized to achieve uniform coverage and to obtain cross-linked maps by observing the fields with different scan directions. We have maximized the efficiency of the survey by implementing a close to 24 hour observing strategy, switching between daytime and nighttime observing plans and minimizing the telescope idle time. We describe the challenges represented by the survey optimization for the significantly wider area observed by AdvACT, which will observe roughly half of the low-foreground sky. The survey strategies described here may prove useful for planning future ground-based CMB surveys, such as the Simons Observatory and CMB Stage IV surveys.
The Atacama B-mode Search (ABS), which began observations in February of 2012, is a crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile. ABS is searching for the B-mode polarization spectrum of the cosmic microwave background (CMB) at large angular scales from multipole moments of ` ~ 50 ~ 500, a range that includes the primor- dial B-mode peak from inflationary gravity waves at ~ 100. The ABS focal plane consists of 240 pixels sensitive to 145 GHz, each containing two transition-edge sensor bolometers coupled to orthogonal polarizations with a planar ortho-mode transducer. An ambient-temperature con- tinuously rotating half-wave plate and 4 K optics make the ABS instrument unique. We discuss the characterization of the detector spectral responses with a Fourier transform spectrometer and demonstrate that the pointing model is adequate. We also present measurements of the beam from point sources and compare them with simulations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.