The semiconductor industry continues to push the limits of immersion lithography through multiple patterning techniques for printing features with critical dimension 20 nm and below. As a result overlay has become one of the critical lithography control parameters impacting device performance and has a stringent budget for yielding at smaller half pitch nodes. Overlay has several sources of errors related to scanner, lens, mask, and wafer. Lithographers have developed both linear and higher order field and wafer models to successfully compensate for the static fingerprints from different sources of error. After the static modeled portion of the fingerprint is removed, the remaining overlay error can be characterized as unstable modeled error or un-modeled error, commonly called uncorrectable residual error. This paper explores the fundamental relationship of overlay to wafer geometry through mechanisms of process-induced contributions to the wafer overlay, categorized as plastic and elastic wafer deformation. Correlation of overlay to local features such as slip lines is proven experimentally. The paper describes methodologies and geometry-induced overlay metrics for the application of wafer geometry to perform overlay feedback and feed forward applications. Feedback applications allow for process development and controlling semiconductor processes through in-line monitoring of wafers. Feed forward applications could include geometrybased corrections to the scanner for compensating non-static wafer geometry related overlay errors, and grouping wafers based on higher-order geometry.
Honggoo Lee, Jongsu Lee, Sang Min Kim, Changhwan Lee, Sangjun Han, Myoungsoo Kim, Wontaik Kwon, Sung-Ki Park, Pradeep Vukkadala, Amartya Awasthi, J. Kim, Sathish Veeraraghavan, DongSub Choi, Kevin Huang, Prasanna Dighe, Cheouljung Lee, Jungho Byeon, Soham Dey, Jaydeep Sinha
Aggressive advancements in semiconductor technology have resulted in integrated chip (IC) manufacturing capability at sub-20nm half-pitch nodes. With this, lithography overlay error budgets are becoming increasingly stringent. The delay in EUV lithography readiness for high volume manufacturing (HVM) and the need for multiple-patterning lithography with 193i technology has further amplified the overlay issue. Thus there exists a need for technologies that can improve overlay errors in HVM. The traditional method for reducing overlay errors predominantly focused on improving lithography scanner printability performance. However, processes outside of the lithography sector known as processinduced overlay errors can contribute significantly to the total overlay at the current requirements. Monitoring and characterizing process-induced overlay has become critical for advanced node patterning. Recently a relatively new technique for overlay control that uses high-resolution wafer geometry measurements has gained significance. In this work we present the implementation of this technique in an IC fabrication environment to monitor wafer geometry changes induced across several points in the process flow, of multiple product layers with critical overlay performance requirement. Several production wafer lots were measured and analyzed on a patterned wafer geometry tool. Changes induced in wafer geometry as a result of wafer processing were related to down-stream overlay error contribution using the analytical in-plane distortion (IPD) calculation model. Through this segmentation, process steps that are major contributors to down-stream overlay were identified. Subsequent process optimization was then isolated to those process steps where maximum benefit might be realized. Root-cause for the within-wafer, wafer-to-wafer, tool-to-tool, and station-to-station variations observed were further investigated using local shape curvature changes – which is directly related to stresses induced by wafer processing. In multiple instances it was possible to adjust process parameters such as gas flow rate, machine power, etc., and reduce non-uniform stresses in the wafer. Estimates of process-induced overlay errors were also used to perform feedforward overlay corrections for 3D-NAND production wafers. Results from the studies performed in an advanced semiconductor fabrication line are reported in this paper.
For several decades, the semiconductor industry has been controlling site flatness of the starting wafer material by defining tight specs on industry-standard site flatness metrics such as SFQR (Site Frontsurface-referenced least sQuares/Range) and ESFQR (Edge Site Frontsurface-referenced least sQuares/Range) that scale with technology nodes. The need for controlling site flatness of the starting material stems from previous research that shows that site flatness directly impacts lithography defocus. The wafer flatness variation changes significantly due to wafer processing downstream such as CMP, etch, and film deposition. Hence, for 2X nm and smaller technology nodes with very stringent focus process windows, it is critical to control wafer flatness variations at critical steps along the semiconductor process flow. In this paper, the capability of an interferometer-based patterned wafer metrology tool to predict lithography defocus is validated by comparison to scanner leveling data. The patterned wafer metrology tool is used to characterize the impact of near-edge flatness changes on the critical dimension (CD) of the contact holes due to different edge CMP process conditions. The results of the characterization illustrate how a site flatness specification or threshold can be developed for critical patterning steps. The paper also illustrates how the patterned wafer metrology tool can be used to identify processes causing site flatness variations. Finally, the site flatness variation at these processes can be monitored using the pattern wafer metrology tool to detect process drifts and excursion before patterning.
Controlling overlay errors resulting from wafer processing, such as film deposition, is essential for meeting overlay budgets in future generations of devices. Out-of-plane distortions induced on the wafer due to processing are often monitored through high-resolution wafer geometry measurements. While such wafer geometry measurements provide information about the wafer distortion, mechanics models are required to connect such measurements to overlay errors, which result from in-plane distortions. The aim of this paper is to establish fundamental connections between the out-ofplane distortions that are characterized in wafer geometry measurements and the in-plane distortions on the wafer surface that lead to overlay errors. First, an analytical mechanics model is presented to provide insight into the connection between changes in wafer geometry and overlay. The analytical model demonstrates that the local slope of the change in wafer shape induced by the deposition of a residually stressed film is related to the induced overlay for simple geometries. Finite element modeling is then used to consider realistic wafer geometries and assess correlations between the local slope of the wafer shape change induced by the deposition of a stressed film and overlay. As established previously, overlay errors only result when the stresses in the film are non-uniform, thus the finite element study considers wafers with several different nonuniform residual stress distributions. Correlation between overlay and a metric based on a corrected wafer slope map is examined. The results of the modeling and simulations are discussed and compared to recently published experimental results.
Process-induced overlay errors are a growing problem in meeting the ever-tightening overlay requirements for integrated circuit production. While uniform process-induced stress is easily corrected, non-uniform stress across the wafer is much more problematic, often resulting in non-correctable overlay errors. Measurements of the wafer geometry of free, unchucked wafers give a powerful method for characterization of such non-uniform stress. We will describe a Patterned Wafer Geometry (PWG) tool, which uses optical methods to measure the geometry of in-process wafers. PWG data can be related to In-Plane Distortion (IPD) of the wafer through the PIR (Predicted IPD Residual) metric. This paper will explore the relationship between the PIR data and measured overlay data on Engineered Stress Monitor (ESM) wafers containing various designed stress variations. The process used to fabricate ESM wafers is quite versatile and can mimic many different stress variation signatures. For this study, ESM wafers were built with strong across-wafer stress variation and another ESM wafer set was built with strong intrafield stress variation. IPD was extensively characterized in two different ways: using standard overlay error metrology and using PWG metrology. Strong correlation is observed between these two independent sets of data, indicating that the PIR metric is able to clearly see wafer distortions. We have taken another step forward by using PIR data from the PWG tool to correct process-induced overlay error by feedforward to the exposure tool, a novel method that we call PWG-FF. We conclude that appropriate wafer geometry measurements of in-process wafers have strong potential to characterize and reduce process-induced overlay errors.
Process-induced overlay errors are a growing problem in meeting the ever-tightening overlay requirements for integrated circuit production. Although uniform process-induced stress is easily corrected, nonuniform stress across the wafer is much more problematic, often resulting in noncorrectable overlay errors. Measurements of the wafer geometry of free, unchucked wafers give a powerful method for characterization of such nonuniform stress-induced wafer distortions. Wafer geometry data can be related to in-plane distortion of the wafer pulled flat by an exposure tool vacuum chuck, which in turn relates to overlay error. This paper will explore the relationship between wafer geometry and overlay error by the use of silicon test wafers with deliberate stress variations, i.e., engineered stress monitor (ESM) wafers. A process will be described that allows the creation of ESM wafers with nonuniform stress and includes many thousands of overlay targets for a detailed characterization of each wafer. Because the spatial character of the stress variation is easily changed, ESM wafers constitute a versatile platform for exploring nonuniform stress. We have fabricated ESM wafers of several different types, e.g., wafers where the center area has much higher stress than the outside area. Wafer geometry is measured with an optical metrology tool. After fabrication of the ESM wafers including alignment marks and first level overlay targets etched into the wafer, we expose a second level resist pattern designed to overlay with the etched targets. After resist patterning, relative overlay error is measured using standard optical methods. An innovative metric from the wafer geometry measurements is able to predict the process-induced overlay error. We conclude that appropriate wafer geometry measurements of in-process wafers have strong potential to characterize and reduce process-induced overlay errors.
The deposition of films with nonuniform residual stress can induce local changes in wafer shape and contribute to overlay errors with magnitudes that may be significant in advanced lithographic patterning processes. Understanding the fundamental relationship between residual stress, localized wafer shape changes, and overlay error is crucial for realizing new schemes to manage overlay errors, particularly at advanced nodes where feature sizes are smaller. In the present work, finite element modeling is used to quantitatively relate nonuniform residual stress in a deposited thin film to localized wafer shape changes and overlay errors. The results demonstrate that there is a strong correlation between localized shape variations induced by nonuniform residual stresses and noncorrectable overlay errors.
The deposition of residually stressed films in semiconductor manufacturing processes introduces elastic distortions in the
wafer that can contribute to overlay errors in lithographic patterning. The distortion induced by film deposition causes
out-of-plane distortion (i.e. wafer shape) that can be measured with commercial metrology tools as well as in-plane
distortion that leads to overlay errors. In the present work, overlay errors and out-of-plane distortion of wafers resulting
from residual stresses that are non-uniform over the area of wafer are examined using computational mechanics
modeling. The results of these simulations are used to examine the correlations between wafer shape features and
overlay errors. Specifically, connections between overlay errors and metrics based on the slope of the wafer shape are
assessed.
KEYWORDS: Semiconducting wafers, Optical lithography, Lithography, Overlay metrology, Scanners, Shape analysis, Data modeling, Finite element methods, Error analysis, Chemical elements
Chucking of substrates with wafer shape and thickness variations results in elastic deformation that can cause significant in-plane distortions that lead to overlay errors in lithographic patterning. As feature sizes shrink, overlay errors due to the combination of wafer geometry and chucking become a larger fraction of the error budget and must be controlled. We use a finite element model and a lithographic correction postprocessing scheme to predict in-plane distortions that result from chucking wafers with shape variations. We then use the predictions of in-plane distortions at two different patterning steps to calculate the component of overlay error that arises from localized shape variations. Using the model, in-plane distortion and overlay errors due to chucking are examined for multiple wafers with different geometries. The results show that long spatial wavelength shape variations cause significant distortion, but can largely be mitigated through the use of simple first-order corrections that are applied in typical lithography scanners. In contrast, high-frequency spatial variations cause distortions that cannot be corrected and hence lead to meaningful overlay errors. The results provide fundamental insight into chucking-induced overlay errors and can serve as a basis for the development of higher order scanner correction schemes that explicitly account for the wafer geometry through high-density wafer shape measurements.
Extreme ultraviolet lithography (EUVL) has stringent requirements on image placement (IP) errors in order to allow for
the patterning of devices with critical dimensions (CD) in the sub-32 nm regime. A major contributor to IP error in
EUVL is non-flatness of the mask. Electrostatic chucks are used to support and flatten masks in EUVL scanners.
Proper operation requires that the electrostatic forces generated by the chuck be of sufficient magnitude and be uniform
over the entire chucking area. Hence, there is a need to measure the clamping pressure distribution to properly
characterize performance of electrostatic chucks. This paper discusses two methods to measure electrostatic pressure
magnitude and uniformity by examining the distortion of thin substrates (wafers) during chucking. In the first method, a
wafer with lithographically defined mesas is chucked with the mesas located at the interface between the wafer and the
chuck and thus results in a void near the mesa after chucking. Analytical and finite element models were used to relate
the resulting void radius to the electrostatic pressure and used to assess the feasibility of the technique. Measurements of
pressure on a slab chuck were conducted to demonstrate the mesa measurement approach. The second measurement
method examines the deflection of a wafer between pins on a pin chuck in order to estimate the local pressure. A 3D FE
model was developed to predict the deformation of the wafer between the pins as a function of applied pressure. The
model was used to assess the feasibility of the approach and provide guidance on selecting appropriate substrates for use
in such experiments.
Electrostatic chucks are used to support and flatten extreme ultraviolet lithography (EUVL) masks during exposure
scanning. Characterizing and predicting the capability of electrostatic chucks to reduce mask nonflatness to meet the
required specifications are critical issues. Previous research has assumed that the electrostatic force is uniform over the
entire chucking area; however, recent results from chucking experiments suggest this may not be the case. Quantifying
the spatial nonuniformity in electrostatic force is critical for the understanding and modeling of electrostatic chucking of
masks in EUVL systems. The present research proposes a novel approach to identify the local electrostatic pressure, by
analyzing experimental interferometric data and comparing it to analytical and finite element modeling results. The
local analysis can be expanded to a global prediction spanning the entire electrostatic chucking surface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.