The Cherenkov Telescope Array Observatory (CTAO) will include telescopes of three different sizes, the smallest of which are the Small-Sized Telescopes (SSTs). In particular, the SSTs will be installed at the southern site of CTAO, on the Chilean Andes, and will cover the highest energy range of CTAO (up to ~300 TeV). The SSTs are developed by an international consortium of institutes that will provide them as an in-kind contribution to CTAO. The optical design of the SSTs is based on a Schwarzschild-Couder-like dual-mirror polynomial configuration, with a primary aperture of 4.3m diameter. They are equipped with a focal plane camera based on SiPM detectors covering a field of view of ~9°. The preliminary design of the SST telescopes was evaluated and approved during the Product Review (PR) organised with CTAO in February 2023. The SST project is now going through a consolidation phase leading to the finalisation and submission of the final design to the Critical Design Review (CDR), expected to occur late 2024, after which the production and construction of the telescopes will begin leading to a delivery of the telescopes to CTAO southern site starting at the end of 2025-early 2026 onward. In this contribution we will present the progress of the SST programme, including the results of the PDR, the consolidation phase of the project and the plan up to the on-site integration of the telescopes.
The ASTRI Stellar Intensity Interferometry Instrument (SI3) is a fast single photon counting instrument for performing intensity interferometry observations of bright stars with the ASTRI Mini-Array. SI3 is designed to perform accurate measurements of single photon arrival times (1ns) in a narrow optical bandwidth (1-8nm) centered at a wavelength in the range 420-500nm. The instrument will exploit the 36 simultaneous baselines over distances between 100m and 700m of the ASTRI Mini-Array to achieve angular resolutions below 100 microarcsec. At this level of resolution it turns out to be possible to reveal details on the surface and of the environment surrounding bright stars on the sky. During 2023 SI3 underwent a significant redesign, with an optical fiber positioned on the focal plane to feed the detectors and electronics. Here we present this new baseline design of SI3, and the motivations behind this choice, including the possibility of future upgrades of the instrument with dedicated front-end electronics and channel multiplexing. We will also show the first results of the target selection procedure based on simulations. Stars with angular diameters of less than 500- 600 microarcseconds up to about magnitude 4.5 will be observable. Thanks to the 36 simultaneous baselines, accurate (up to ∼1%) angular measurements can be obtained with 10-30 hours of observations. This accuracy can rival with that obtained with other arrays of Cherenkov telescopes, despite the smaller collecting area of a single ASTRI telescope.
KEYWORDS: Software development, Telescopes, Data modeling, Computer architecture, Control systems, Atmospheric Cherenkov telescopes, Data acquisition, Data archive systems, Design, Cameras
The Astrophysics with Italian Replicating Technology Mirrors (ASTRI) Mini-Array is an international collaboration led by the Italian National Institute for Astrophysics (INAF) and devoted to imaging atmospheric Cherenkov light for very-high γ-ray astrophysics, detection of cosmic-rays, and stellar Hambury-Brown intensity interferometry. The project is deploying an array of nine dual-mirror aplanatic imaging atmospheric Cherenkov telescopes of 4-m class at the Teide Observatory on Tenerife in the Canary Islands. Based on SiPM sensors, the focal plane camera covers an unprecedented field of view of 10.5 deg in diameter. The array is most sensitive to γ-ray radiation above 1 up to 200 TeV, with an angular resolution of 3 arcmin, better than the current particle arrays, such as LHAASO and HAWC. We describe the overall software architecture of the ASTRI Mini-Array and the software engineering approach for its development. The software covers the entire life cycle of the Mini-Array, from scheduling to remote operations, data acquisition, and processing until data dissemination. The on-site control software allows remote array operations from different locations, including automated reactions to critical conditions. All data are collected every night, and the array trigger is managed post facto. The high-speed networking connection between the observatory site and the Data Center in Rome allows for ready data availability for stereoscopic event reconstruction, data processing, and almost real-time science products generation.
KEYWORDS: Atmospheric Cherenkov telescopes, Telescopes, Data archive systems, Calibration, Data centers, Data processing, Monte Carlo methods, Data storage, Device simulation, Data acquisition
The ASTRI Mini-Array is an international project led by the Italian National Institute for Astrophysics (INAF) to build and operate an array of nine 4-m class Imaging Atmospheric Cherenkov Telescopes (IACTs) at the Observatorio del Teide (Tenerife, Spain). The system is designed to perform deep observations of the galactic and extragalactic gamma-ray sky in the TeV and multi-TeV energy band, with important synergies with other ground-based gamma-ray facilities in the Northern Hemisphere and space-borne telescopes. As part of the overall software system, the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Team is developing dedicated systems for Data Processing, Simulation, and Archive to achieve effective handling, dissemination, and scientific exploitation of the ASTRI Mini-Array data. Thanks to the high-speed network connection available between Canary Islands and Italy, data acquired on-site will be delivered to the ASTRI Data Center in Rome immediately after acquisition. The raw data will be then reduced and analyzed by the Data Processing System up to the generation of the final scientific products. Detailed Monte Carlo simulated data will be produced by the Simulation System and exploited in several data processing steps in order to achieve precise reconstruction of the physical characteristics of the detected gamma rays and to reject the overwhelming background due to charged cosmic rays. The data access at different user levels and for different use cases, each one with a customized data organization, will be provided by the Archive System. In this contribution we present these three ASTRI Mini-Array software systems, focusing on their main functionalities, components, and interfaces.
KEYWORDS: Data modeling, Atmospheric Cherenkov telescopes, Control systems, Software development, Telescopes, Data processing, Data archive systems, Data acquisition, Calibration, Computer architecture
The ASTRI Mini-Array is an international collaboration led by the Italian National Institute for Astrophysics (INAF) and devoted to the imaging of atmospheric Cherenkov light for very-high gamma-ray astronomy. The project is deploying an array of 9 telescopes sensitive above 1 TeV. In this contribution, we present the architecture of the software that covers the entire life cycle of the observatory, from scheduling to remote operations and data dissemination. The high-speed networking connection available between the observatory site, at the Canary Islands, and the Data Center in Rome allows for ready data availability for stereo triggering and data processing.
The ASTRI Mini-Array is an international project led by the Italian National Institute for Astrophysics (INAF) aimed at the construction and operation of an array of nine Imaging Atmospheric Cherenkov Telescopes (IACTs) at the Observatorio del Teide in Tenerife (Spain). The project is designed to detect very high-energy gamma rays up to the multi-TeV energy scale. The telescopes design, based on the Schwarzschild-Couder two mirror configuration and Silicon Photomultipliers sensors, leads to a very wide field of view of 10.5 degrees which allows to cover a large ground surface area with an average inter-telescope distance of about 160 m. Upon completion, it will be for some time the largest IACT array in operation below 2,500m a.s.l. both in terms of number of telescopes and of ground surface area, with the primary goal of investigating gamma-ray emission from celestial sources. The ASTRI Mini-Array design and expected performance are based on the stereoscopic technique, i.e. the detection of the same atmospheric shower event with two or more telescopes: therefore the correct identification of the single-telescope triggers participating to the same stereo event is of paramount importance. This strong requirement must meet the need to observe muon events with each single-telescope to allow for calibrations with adequate precision. In the ASTRI Mini-Array operation concept, all the single-telescope events are acquired independently and stored for off-line processing. The Stereo Event Builder (SEB) software system is the part of the off-line reconstruction chain that is responsible for identifying single and stereo Cherenkov events. The SEB constraints, design, and expected performance are described in this article.
KEYWORDS: Atmospheric Cherenkov telescopes, Data acquisition, Cameras, Control systems, Telescopes, Interferometry, Data centers, Software development, Computer architecture, Quality systems
The ASTRI Mini-Array is an international collaboration led by the Italian National Institute for Astrophysics. This project aims to construct and operate an array of nine Imaging Atmospheric Cherenkov Telescopes to study gamma-ray sources at very high energy (TeV) and perform stellar intensity interferometry observations. We describe the software architecture and the technologies used to implement the Online Observation Quality System (OOQS) for the ASTRI Mini-Array project. The OOQS aims to execute data quality checks on the data acquired in real-time by the Cherenkov cameras and intensity interferometry instruments, and provides feedback to both the Central Control System and the Operator about abnormal conditions detected. The OOQS can notify other sub-systems, triggering their reaction to promptly correct anomalies. The results from the data quality analyses (e.g. camera plots, histograms, tables, and more) are stored in the Quality Archive for further investigation and they are summarised in reports available to the Operator. Once the OOQS results are stored, the operator can visualize them using the Human Machine Interface. The OOQS is designed to manage the high data rate generated by the instruments (up to 4.5 GB/s) and received from the Array Data Acquisition System through the Kafka service. The data are serialized and deserialized during the transmission using the Avro framework. The Slurm workload scheduler executes the analyses exploiting key features such as parallel analyses and scalability.
The Cherenkov Telescope Array Observatory (CTAO) consists of three types of telescopes: large-sized (LST), mediumsized (MST), and small-sized (SST), distributed in two observing sites (North and South). For the CTA South “Alpha Configuration” the construction and installation of 37 (+5) SST telescopes (a number that could increase up to 70 in future upgrades) are planned. The SSTs are developed by an international consortium of institutes that will provide them as an in-kind contribution to CTAO. The SSTs rely on a Schwarzschild-Couder-like dual-mirror polynomial optical design, with a primary mirror of 4 m diameter, and are equipped with a focal plane camera based on SiPM detectors covering a field of view of ~9°. The current SST concept was validated by developing the prototype dual-mirror ASTRI-Horn Cherenkov telescope and the CHEC-S SiPM focal plane camera. In this contribution, we will present an overview of the SST key technologies, the current status of the SST project, and the planned schedule.
The ASTRI Mini-Array is an International collaboration, led by the Italian National Institute for Astrophysics, that is constructing and operating an array of nine Imaging Atmospheric Cherenkov Telescopes to study gamma-ray sources at very high energy and perform optical stellar intensity interferometry (SII) observations. Angular resolutions below 100 microarcsec are achievable with stellar intensity interferometry, using telescopes separated by hundreds to thousands of meters baselines. At this level of resolution it turns out to be possible to reveal details on the surface and of the environment surrounding bright stars on the sky. The ASTRI Mini-Array will provide a suitable infrastructure for performing these measurements thanks to the capabilities offered by its 9 telescopes, which provide 36 simultaneous baselines over distances between 100 m and 700 m. After providing an overview of the scientific context and motivations for performing SII science with the ASTRI Mini-Array telescopes, we present the baseline design for the ASTRI Stellar Intensity Interferometry Instrument, a fast single photon counting instrument that will be mounted on the ASTRI telescopes and dedicated to performing SII observations of bright stars.
The ASTRI Mini-Array is a gamma-ray experiment led by INAF with the partnership of the Instituto de Astrofisica de Canarias, Fundacion Galileo Galilei, University of Sao Paulo, North-West University S.A., and Observatoire de Geneve. It is being implemented at the Observatorio del Teide Tenerife. The nine (9) Cherenkov dual-mirror aplanatic telescopes of 4 m diameter are positioned at an average distance from each other of 160 m. Thanks to the unprecedented field-of-view (10.5 deg) of the ASTRI telescopes, the MA will allow us to observe the gamma-ray sky from a few up to a few hundred TeVs with competitive flux sensitivity and enhanced angular resolution. The curved focal plane of the camera is covered with SiPM sensors and is equipped with fast front-end electronics. The control SW will allow us to operate the Mini-array remotely, while a dedicated off-site Data Center in Italy will process the scientific products every night. The ASTRI Mini-Array represents a pivotal instrument to perform groundbreaking measurements very soon. In this paper, we will review the implementation plan of the ASTRI Mini-Array and report on the ongoing construction.
The pointing calibration of Imaging Atmospheric Cherenkov Telescopes (IACTs) is often a technological challenge: their cameras are not designed for imaging the stars in the Field of View (FoV) and this prevents from using the standard astrometry of the focal plane for monitoring the pointing of the instrument. A common solution is to adopt auxiliary optical devices aligned with the line-of-sight of the telescope but, in order to avoid systematic errors, a pointing strategy considering also the signal from the Cherenkov camera is desirable, especially when a dual-mirror optical configuration is adopted. In this contribution, we present a new custom astrometry technique that we developed for the Cherenkov camera of ASTRI telescopes, using the so-called Variance method: an ancillary output data-flow owning the possibility to image the stellar component of the Night Sky Background with relatively good sensitivity (limiting magnitude ∼7). Despite the large angular size of Cherenkov camera pixels (∼11 ′′) and their relatively small number (a few thousand), our automatic astrometric routine is able to identify the stars in the FoV with sub-pixel precision, giving the possibility of monitoring the pointing of the telescope in real-time, without any additional hardware. Our technique has been already tested on archive data taken with the ASTRI-Horn prototype telescope, located in Italy, and it will be implemented in the incoming ASTRI Mini-Array: a facility of 9 identical Cherenkov telescopes under construction in Tenerife (Canary Islands). In this contribution we discuss the features of this novel procedure, its potentialities, and how they will enhance the scientific accuracy of future ASTRI telescopes.
KEYWORDS: Telescopes, Prototyping, Calibration, Atmospheric Cherenkov telescopes, Cameras, Data acquisition, Gamma radiation, Monte Carlo methods, Device simulation, Data archive systems, Data analysis
The Cherenkov Telescope Array (CTA) is a worldwide project aimed at building the next-generation groundbased gamma-ray observatory. CTA will be composed of two arrays of telescopes of different sizes, one each in the Northern and Southern hemispheres, to achieve full-sky coverage and a ten-fold improvement in sensitivity with respect to the present-generation facilities. Within the CTA project, the Italian National Institute for Astrophysics (INAF) is developing an end-to-end prototype of one of the CTA Small-Size Telescope’s designs with a dual-mirror (SST-2M) Schwarzschild-Couder optics design. The prototype, named ASTRI SST-2M, is located at the INAF “M.C. Fracastoro” observing station in Serra La Nave (Mt. Etna, Sicily) and has started its verification and performance validation phase in fall 2017. A mini-array of (at least) nine ASTRI telescopes has been proposed to be deployed at the CTA southern site, during the pre-production phase, by means of a collaborative effort carried out by institutes from Italy, Brazil, and South Africa. The CTA ASTRI team has developed a complete end-to-end software package for the reduction, up to the final scientific products, of raw data acquired with ASTRI telescopes with the aim of actively contributing to the global ongoing activities for the official data handling system of the CTA observatory. The group is also undertaking a massive production of Monte Carlo simulation data using the same software chain adopted by the CTA Consortium. Both activities are also carried out in the framework of the European H2020-ASTERICS (Astronomy ESFRI and Research Infrastructure Cluster) project. In this work, we present the main components of the ASTRI data reduction software package and report the status of its development. Preliminary results on the validation of both data reduction and telescope simulation chains achieved with real data taken by the prototype and simulations are also discussed.
Today the scientific community is facing an increasing complexity of the scientific projects, from both a technological and a management point of view. The reason for this is in the advance of science itself, where new experiments with unprecedented levels of accuracy, precision and coverage (time and spatial) are realised. Astronomy is one of the fields of the physical sciences where a strong interaction between the scientists, the instrument and software developers is necessary to achieve the goals of any Big Science Project. The Cherenkov Telescope Array (CTA) will be the largest ground-based very high-energy gamma-ray observatory of the next decades. To achieve the full potential of the CTA Observatory, the system must be put into place to enable users to operate the telescopes productively. The software will cover all stages of the CTA system, from the preparation of the observing proposals to the final data reduction, and must also fit into the overall system. Scientists, engineers, operators and others will use the system to operate the Observatory, hence they should be involved in the design process from the beginning. We have organised a workgroup and a workflow for the definition of the CTA Top Level Use Cases in the context of the Requirement Management activities of the CTA Observatory. Scientists, instrument and software developers are collaborating and sharing information to provide a common and general understanding of the Observatory from a functional point of view. Scientists that will use the CTA Observatory will provide mainly Science Driven Use Cases, whereas software engineers will subsequently provide more detailed Use Cases, comments and feedbacks. The main purposes are to define observing modes and strategies, and to provide a framework for the flow down of the Use Cases and requirements to check missing requirements and the already developed Use-Case models at CTA sub-system level. Use Cases will also provide the basis for the definition of the Acceptance Test Plan for the validation of the overall CTA system. In this contribution we present the organisation and the workflow of the Top Level Use Cases workgroup.
ASTRI is an on-going project developed in the framework of the Cherenkov Telescope Array (CTA). An end- to-end prototype of a dual-mirror small-size telescope (SST-2M) has been installed at the INAF observing station on Mt. Etna, Italy. The next step is the development of the ASTRI mini-array composed of nine ASTRI SST-2M telescopes proposed to be installed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort carried on by Italy, Brazil and South-Africa and led by the Italian National Institute of Astrophysics, INAF. To control the ASTRI telescopes, a specific ASTRI Mini-Array Software System (MASS) was designed using a scalable and distributed architecture to monitor all the hardware devices for the telescopes. Using code generation we built automatically from the ASTRI Interface Control Documents a set of communication libraries and extensive Graphical User Interfaces that provide full access to the capabilities offered by the telescope hardware subsystems for testing and maintenance. Leveraging these generated libraries and components we then implemented a human designed, integrated, Engineering GUI for MASS to perform the verification of the whole prototype and test shared services such as the alarms, configurations, control systems, and scientific on-line outcomes. In our experience the use of code generation dramatically reduced the amount of effort in development, integration and testing of the more basic software components and resulted in a fast software release life cycle. This approach could be valuable for the whole CTA project, characterized by a large diversity of hardware components.
The ASTRI mini-array, composed of nine small-size dual mirror (SST-2M) telescopes, has been proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA), as a set of preproduction units of the CTA observatory. The ASTRI mini-array is a collaborative and international effort carried out by Italy, Brazil and South Africa and led by the Italian National Institute of Astrophysics, INAF. We present the main features of the current implementation of the Mini-Array Software System (MASS) now in use for the activities of the ASTRI SST-2M telescope prototype located at the INAF observing station on Mt. Etna, Italy and the characteristics that make it a prototype for the CTA control software system. CTA Data Management (CTADATA) and CTA Array Control and Data Acquisition (CTA-ACTL) requirements and guidelines as well as the ASTRI use cases were considered in the MASS design, most of its features are derived from the Atacama Large Millimeter/sub-millimeter Array Control software. The MASS will provide a set of tools to manage all onsite operations of the ASTRI mini-array in order to perform the observations specified in the short term schedule (including monitoring and controlling all the hardware components of each telescope and calibration device), to analyze the acquired data online and to store/retrieve all the data products to/from the onsite repository.
The Italian National Institute for Astrophysics (INAF) is leading the Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI) project whose main purpose is the realization of small size telescopes (SST) for the Cherenkov Telescope Array (CTA). The first goal of the ASTRI project has been the development and operation of an innovative end-to-end telescope prototype using a dual-mirror optical configuration (SST-2M) equipped with a camera based on silicon photo-multipliers and very fast read-out electronics. The ASTRI SST-2M prototype has been installed in Italy at the INAF “M.G. Fracastoro” Astronomical Station located at Serra La Nave, on Mount Etna, Sicily. This prototype will be used to test several mechanical, optical, control hardware and software solutions which will be used in the ASTRI mini-array, comprising nine telescopes proposed to be placed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort led by INAF and carried out by Italy, Brazil and South-Africa. We present here the use cases, through UML (Unified Modeling Language) diagrams and text details, that describe the functional requirements of the software that will manage the ASTRI SST-2M prototype, and the lessons learned thanks to these activities. We intend to adopt the same approach for the Mini Array Software System that will manage the ASTRI miniarray operations. Use cases are of importance for the whole software life cycle; in particular they provide valuable support to the validation and verification activities. Following the iterative development approach, which breaks down the software development into smaller chunks, we have analysed the requirements, developed, and then tested the code in repeated cycles. The use case technique allowed us to formalize the problem through user stories that describe how the user procedurally interacts with the software system. Through the use cases we improved the communication among team members, fostered common agreement about system requirements, defined the normal and alternative course of events, understood better the business process, and defined the system test to ensure that the delivered software works properly. We present a summary of the ASTRI SST-2M prototype use cases, and how the lessons learned can be exploited for the ASTRI mini-array proposed for the CTA Observatory.
In the framework of the international Cherenkov Telescope Array (CTA) gamma-ray observatory, a mini-array of nine small-sized, dual-mirror (SST-2M) telescopes developed by the ASTRI Collaboration has been proposed to be installed at the future CTA southern site. In such a location, the capability of each telescope to process its own data before sending them to a central acquisition system provides a key advantage. We implemented the complete analysis chain required by a single telescope on a NVIDIA® Jetson™ TK1 development board, exceeding the nominal required real-time processing speed by more than a factor two, while staying within a very small power budget.
In the framework of the international Cherenkov Telescope Array (CTA) gamma-ray observatory, the Italian National Institute for Astrophysics (INAF) is developing a dual-mirror, small-sized, end-to-end prototype (ASTRI SST-2M), inaugurated on September 2014 at Mt. Etna (Italy), and a mini-array composed of nine ASTRI telescopes, proposed to be installed at the southern CTA site. The ASTRI mini-array is a collaborative effort led by INAF and carried out by institutes from Italy, Brazil, and South-Africa. The project is also including the full data handling chain from raw data up to final scientific products. To this end, a dedicated software for the online/ on-site/off-site data reconstruction and scientific analysis is under development for both the ASTRI SST-2M prototype and mini-array. The software is designed following a modular approach in which each single component and the entire pipeline are developed in compliance with the CTA requirements. Data reduction is conceived to be run on parallel computing architectures, as multi-core CPUs and graphic accelerators (GPUs), and new hardware architectures based on low-power consumption processors (e.g. ARM). The software components are coded in C++/Python/CUDA and wrapped by efficient pipelines written in Python. The final scientific products are then achieved by means of either science tools currently being used in the CTA Consortium (e.g. ctools) or specifically developed ones. In this contribution, we present the framework and the main software components of the ASTRI SST-2M prototype and mini-array data reconstruction and scientific analysis software package, and report the status of its development.
The ASTRI project of the Italian National Institute for Astrophysics (INAF) is developing, in the framework of the Cherenkov Telescope Array (CTA), an end-to-end prototype system based on a dual-mirror small-sized Cherenkov telescope. Data preservation and accessibility are guaranteed by means of the ASTRI Archive System (AAS) that is responsible for both the on-site and off-site archiving of all data produced by the different sub- systems of the so-called ASTRI SST-2M prototype. Science, calibration, and Monte Carlo data together with the dedicated Instrument Response Functions (IRFs) (and corresponding metadata) will be properly stored and organized in different branches of the archive. A dedicated technical data archive (TECH archive) will store the engineering and auxiliary data and will be organized under a parallel database system. Through the use of a physical system archive and a few logical user archives that reflect the different archive use-cases, the AAS has been designed to be independent from any specific data model and storage technology. A dedicated framework to access, browse and download the telescope data has been identified within the proposal handling utility that stores and arranges the information of the observational proposals. The development of the whole archive system follows the requirements of the CTA data archive and is currently carried out by the INAF-OAR & ASI-Science Data Center (ASDC) team. The AAS is fully adaptable and ready for the ASTRI mini-array that, formed of at least nine ASTRI SST-2M telescopes, is proposed to be installed at the CTA southern site.
KEYWORDS: Atmospheric Cherenkov telescopes, Telescopes, Data acquisition, Prototyping, Cameras, Observatories, Physics, Data communications, Monte Carlo methods, Data storage
The Cherenkov Telescope Array (CTA) observatory will be one of the biggest ground-based very-high-energy (VHE) γ-
ray observatory. CTA will achieve a factor of 10 improvement in sensitivity from some tens of GeV to beyond 100 TeV
with respect to existing telescopes.
The CTA observatory will be capable of issuing alerts on variable and transient sources to maximize the scientific return.
To capture these phenomena during their evolution and for effective communication to the astrophysical community,
speed is crucial. This requires a system with a reliable automated trigger that can issue alerts immediately upon detection
of γ-ray flares. This will be accomplished by means of a Real-Time Analysis (RTA) pipeline, a key system of the CTA
observatory. The latency and sensitivity requirements of the alarm system impose a challenge because of the anticipated
large data rate, between 0.5 and 8 GB/s. As a consequence, substantial efforts toward the optimization of highthroughput
computing service are envisioned.
For these reasons our working group has started the development of a prototype of the Real-Time Analysis pipeline. The
main goals of this prototype are to test: (i) a set of frameworks and design patterns useful for the inter-process
communication between software processes running on memory; (ii) the sustainability of the foreseen CTA data rate in
terms of data throughput with different hardware (e.g. accelerators) and software configurations, (iii) the reuse of nonreal-
time algorithms or how much we need to simplify algorithms to be compliant with CTA requirements, (iv) interface
issues between the different CTA systems. In this work we focus on goals (i) and (ii).
KEYWORDS: Atmospheric Cherenkov telescopes, Data archive systems, Telescopes, Prototyping, Calibration, Cameras, Data analysis, Gamma radiation, Data acquisition, Data centers
ASTRI is the flagship project of INAF (Italian National Institute for Astrophysics) mainly devoted to the
development of Cherenkov small-size dual-mirror telescopes (SST-2M) in the framework of the international
Cherenkov Telescope Array (CTA) Project. ASTRI SST-2M is an end-to-end prototype including scientific and
technical operations as well as the related data analysis and archiving activities. We present here the ASTRI data
handling and archiving system: it is responsible for both the on-site and off-site data processing and archiving.
All the scientific, calibration, and engineering ASTRI data will be stored and organized in dedicated archives
aimed to provide access to both the monitoring and data analysis systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.