The atomic force microscopy (AFM) was proposed to characterize the surfaces of various materials with high sensitivity and resolution(sub-nanometer) since 1980s, but it intrinsically lacks amongst others chemical sensitivity. These limitations of AFM can be overcome by coupling with optical microscope, which allows to obtain more comprehensive characterization data by in-situ measurement. To integrate the AFM into the upright optical microscope easily, this paper proposed a novel design of AFM. The corresponding Raman-AFM system was developed which adopts the sample scanning structure with a self-developed ultra-thin AFM head. The AFM head employs an innovative multi-reflected laser beam to detect the deformation of the cantilever, which greatly reduces the Z-direction thickness of the head, making its Z-direction thickness smaller than the working distance of the objective lens. Therefore, the AFM probe can be directly mounted under the objective lens of the upright optical microscope without changing the existing optical path. To evaluate the performance of the proposed AFM system, a standard grid was imaged using the Raman-AFM system. Then, a sample of two-dimensional material, black phosphorus(BP)/molybdenum disulfide(MoS2) heterojunction, was characterized. The physicochemical information of the heterojunction was obtained by in-situ measurement of the surface topography and Raman spectra.
Metrological AFM (mAFM) has high-resolution three-dimensional measurement capability, and its measurement results can be traced back to the SI. Most of mAFMs utilize the optical beam deflection (OBD) method to detect the deflection of cantilever probe, which has simple structure and high sensitivity. A novel 3D traceable OBD system was designed based on the flatbed scanner. In the design, the propagation direction of the laser beam can always be parallel to the motion direction of the scanner so that the relative positions of the laser focal spot and the cantilever probe remain unchanged in any scanning range. All the scanners in the X, Y, Z directions are connected in series, and their motion directions are strictly orthogonal without mutual coupling. The application of the compensation scanner achieves the synchronous movement of the aspherical lens and the Z-direction scanner, which avoids the defocusing phenomenon of the cantilever probe during the large-stroke scanning with the Z-direction scanner. A series of experiments were performed to evaluate the proposed design, including the measurement of the laser tracking errors caused by the scanner motion and imaging results of a standard grid under contact mode. The results demonstrated the imaging capabilities of this system.
KEYWORDS: 3D image reconstruction, Calibration, Reconstruction algorithms, 3D image processing, Atomic force microscopy, Optical spheres, Image processing, Atomic force microscope, Image resolution, 3D metrology
Atomic force microscope (AFM) is the most prevalent instrument in nanometer measurement. But the tip shape has a great influence on the measurements of surface topography. Blind tip reconstruction (BTR), established by Villarrubia, provides a good solution to this problem, nevertheless, with low precision if the tip characterizer is not appropriate. In order to explore the optimal tip characterizers for precision BTR, a serial of simulation experiments were carried out. First, a tip characterizer was simulated as the combination of a nanosized sphere with a square grating for the BTR of a conical tip. The results show that rotation structures are more suitable for conical tip reconstruction than prismatic structures. Second, a cylinder structure is chosen to verify the validity as an optimal feature for conical tip reconstruction. The simulation results show that if only the equivalent cone angle of the cylinder structure is no more than the tip, such structure is suitable as a tip characterizer. Tip characterizers need to have structure with smaller equivalent cone angle so as to make enough segments of the tip touched by the local maximum point of the sample. The local maximum point of the cylinder is just the top edge. From another point of view, the edge of the pillar has a zero equivalent radius, which is the sharpest feature but not obviously in scale.
Atomic force microscope (AFM) is very useful in nano-scale force measurement. Lateral force is typically used in nanoscratch and surface friction measurement based on AFM. As one of the most important parameters to obtain lateral force, the lateral spring constant of AFM cantilever probe is of great significance and needs to be quantitative calibrated. Lateral torsion and lateral force of the cantilever are two parameters need to be measured in lateral spring constant calibration. In this article, we develop a calibration system and introduce a calibration method using an AFM head and an electromagnetic balance. An aluminium column with a known angel on top is placed on the weighing pan of the balance. The cantilever is precisely positioned in the AFM head, then approaches and bends on the aluminium column. During this procedure, the bending force and the lateral torsion of the cantilever are synchronously measured by the balance and an optical lever system, respectively. Then the lateral spring constant is calculated with a formula. By using this method, three kinds of rectangular cantilever are calibrated. The relative standard deviations of the calibration results are smaller than 2%.
With nano-level spatial and force resolution, atomic force microscope (AFM) becomes an indispensable nanoindentation measurement instrument for thin films and soft films. To do the research of size effect of the hardness property of thin films, indentation experiments have been done on a gold film with 200 nm thickness and a silicon nitride film with 110 nm thickness. It is possible to change the maximum load forces to get discrete residual depths on the film samples. The contact depths of the gold film are 15.91 nm and 26.67 nm respectively, while the contact depths of the silicon nitride film are 7.82 nm and 10.25 nm respectively. A group of nanoindentation force curves are recorded for the transformation into force-depth curves. Subsequently, a 3D image of the residual indentation can be obtained by in-situ scanning immediately after nanoindentation. The topography data is imported into a Matlab program to estimate the contact area of the indentation. For the gold film, the hardness parameters of 3.31 GPa and 2.57 GPa are calculated under the above two contact depths. And for silicon nitride film, the corresponding results are 6.51GPa and 3.58 GPa. The experimental results illustrate a strong size effect for thin film hardness. The correction of the residual indentation image of the gold film is also done as an initial study. Blind tip reconstruction (BTR) algorithm is introduced to calibrate the tip shape, and more reliable hardness values of 1.15 GPa and 0.94 GPa are estimated.
Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson’s ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.
Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.