A control algorithm for shock mitigation system based on magnetorheological energy absorber (MREA) under dropinduced excitation is experimentally investigated, with the objective of “soft landing” (i.e., the final velocity of the payload exactly reduces to zero when consuming the total piston stroke of the MREA). The dynamic model of the shock mitigation system is established. A feedforward damping force tracking approach based on a basic resistor-capacitor (RC) operatorbased hysteresis model is presented and is further employed to accurately describe and predict the hysteretic nonlinearity of the MREA. According to the real-time states of the dropped mass, including the displacement, velocity and acceleration, the system controller outputs the appropriate damping force command to the MREA to achieve the desired minimized deceleration of the payload. The feasibility and the capability of the designed control algorithm are validated via simulation analyses and experimental tests.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.