The improvement of fill factor of holographic micromirror array (HMA) with holographic waveguide-type for threedimensional (3D) augmented-reality (AR) display system. Our proposed 3D AR system was created and briefly explain it; there have two the HOE optical film at in-and out coupler of the waveguide. In-coupler HOE is our fabricated HMA, it has a same role with optical microlens-array. HMA is integrate the displaying elemental image set (EIS) from micro display which EIS was generated by the integral imaging technology. The micro display has a 6 mm by 8mm size, 48single elemental images and micro display was located g distance from holographic waveguide which waveguide thickness was 5mm. EIS was displayed by micro display to holographic waveguide. HMA was stick with holographic waveguide and located in opposite side of waveguide and micro display. Micro display was display forward to holographic waveguide and fabricated HMA, then displayed EIS is reflected and integrated at the in-coupler HMA and integrated 3D image was through the holographic waveguide by HMA recorded angle. 3D images of internal reflect in the holographic waveguide was 1 time. 3D image was also reflected at the out-coupler HOE which role was same as optical mirror and reflect to observer’s eye. At least observer as the reconstructed images and real object out and reflects by out-coupler HOE.
In this paper, A full-color Denisyuk-type hologram using photopolymer has been recorded by the sequential exposure method. The photopolymer's optical characteristics show that inhibition periods of the photopolymer at three lasers are different in the same beam intensity. To increase the average diffraction efficiency of a full-color holographic optical element (HOE), the three lasers should be sequentially exposed to the photopolymer. The experimental results show that the average efficiency of a full-color reflection HOE is 59.6% and the standard deviation is 2.1. Also, the full-color hologram recorded in a one-layer photopolymer can reconstruct a high-quality image.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.