The Ultraviolet Transient Astronomy Satellite (ULTRASAT) is a space-borne near UV telescope with an unprecedented large field of view (200 deg2 ). The mission, led by the Weizmann Institute of Science and the Israel Space Agency in collaboration with DESY (Helmholtz association, Germany) and NASA (USA), is fully funded and expected to be launched to a geostationary transfer orbit in Q2/Q3 of 2025. With a grasp 300 times larger than GALEX, the most sensitive UV satellite to date, ULTRASAT will revolutionize our understanding of the hot transient universe, as well as of flaring galactic sources. We describe the mission payload, the optical design and the choice of materials allowing us to achieve a point spread function of ∼ 10 arcsec across the FoV, and the detector assembly. We detail the mitigation techniques implemented to suppress out-of-band flux and reduce stray light, detector properties including measured quantum efficiency of scout (prototype) detectors, and expected performance (limiting magnitude) for various objects.
The demand for an alternative to 3He tubes in neutron detectors is growing. Specifically, the increase in challenging requirements for applications in research, industry, safety and homeland security triggered the search for better-suited detectors. Therefore, we developed a high performance, comparatively low-cost and easy to build cold neutron detector prototype (13.6 cm × 13.6 cm active area), employing digital silicon photomultipliers (SiPM) from Philips and a glass scintillator. The optical front end of the detector consists of a GS20 scintillator, enriched in 6Li, a light guide, SiPM arrays and an aluminum cap. In order to find the optimal front-end design, a series of Geant4 simulations were performed. In this work, we present a comparison between simulation results and measured validation data, considering the average number of photons detected and the maximum ratio (brightest pixel response divided by the sum of all pixel responses), for multiple design configurations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.