KEYWORDS: Data processing, Visualization, Lithium, Imaging systems, Medical imaging, Picture Archiving and Communication System, Image processing, Medical diagnostics, Diagnostics, Virtual point source
We have innovatively introduced Visual Patient (VP) concept and method visually to represent and index patient imaging diagnostic records (IDR) in last year SPIE Medical Imaging (SPIE MI 2017), which can enable a doctor to review a large amount of IDR of a patient in a limited appointed time slot. In this presentation, we presented a new approach to design data processing architecture of VP system (VPS) to acquire, process and store various kinds of IDR to build VP instance for each patient in hospital environment based on Hadoop distributed processing structure. We designed this system architecture called Medical Information Processing System (MIPS) with a combination of Hadoop batch processing architecture and Storm stream processing architecture. The MIPS implemented parallel processing of various kinds of clinical data with high efficiency, which come from disparate hospital information system such as PACS, RIS LIS and HIS.
KEYWORDS: Electronic imaging, Diagnostics, Visualization, Virtual point source, 3D visualizations, Picture Archiving and Communication System, 3D displays, Medical diagnostics, Medicine, Radiology
Purpose:
Due to the generation of a large number of electronic imaging diagnostic records (IDR) year after year in a digital hospital, The IDR has become the main component of medical big data which brings huge values to healthcare services, professionals and administration. But a large volume of IDR presented in a hospital also brings new challenges to healthcare professionals and services as there may be too many IDRs for each patient so that it is difficult for a doctor to review all IDR of each patient in a limited appointed time slot. In this presentation, we presented an innovation method which uses an anatomical 3D structure object visually to represent and index historical medical status of each patient, which is called Visual Patient (VP) in this presentation, based on long term archived electronic IDR in a hospital, so that a doctor can quickly learn the historical medical status of the patient, quickly point and retrieve the IDR he or she interested in a limited appointed time slot.
Method:
The engineering implementation of VP was to build 3D Visual Representation and Index system called VP system (VPS) including components of natural language processing (NLP) for Chinese, Visual Index Creator (VIC), and 3D Visual Rendering Engine.There were three steps in this implementation: (1) an XML-based electronic anatomic structure of human body for each patient was created and used visually to index the all of abstract information of each IDR for each patient; (2)a number of specific designed IDR parsing processors were developed and used to extract various kinds of abstract information of IDRs retrieved from hospital information systems; (3) a 3D anatomic rendering object was introduced visually to represent and display the content of VIO for each patient.
Results:
The VPS was implemented in a simulated clinical environment including PACS/RIS to show VP instance to doctors. We setup two evaluation scenario in a hospital radiology department to evaluate whether radiologists accept the VPS and how the VP impact the radiologists’ efficiency and accuracy in reviewing historic medical records of the patients. We got a statistical results showing that more than 70% participated radiologist would like to use the VPS in their radiological imaging services. In comparison testing of using VPS and RIS/PACS in reviewing historic medical records of the patients, we got a statistical result showing that the efficiency of using VPS was higher than that of using PACS/RIS.
New Technologies and Results to be presented:
This presentation presented an innovation method to use an anatomical 3D structure object, called VP, visually to represent and index historical medical records such as IDR of each patient and a doctor can quickly learn the historical medical status of the patient through VPS. The evaluation results showed that VPS has better performance than RIS-integrated PACS in efficiency of reviewing historic medical records of the patients.
Conclusions:
In this presentation, we presented an innovation method called VP to use an anatomical 3D structure object visually to represent and index historical IDR of each patient and briefed an engineering implementation to build a VPS to implement the major features and functions of VP. We setup two evaluation scenarios in a hospital radiology department to evaluate VPS and achieved evaluation results showed that VPS has better performance than RIS-integrated PACS in efficiency of reviewing historic medical records of the patients.
Radiologists currently use a variety of terminologies and standards in most hospitals in China, and even there are multiple terminologies being used for different sections in one department. In this presentation, we introduce a medical semantic comprehension system (MedSCS) to extract semantic information about clinical findings and conclusion from free text radiology reports so that the reports can be classified correctly based on medical terms indexing standards such as Radlex or SONMED-CT. Our system (MedSCS) is based on both rule-based methods and statistics-based methods which improve the performance and the scalability of MedSCS. In order to evaluate the over all of the system and measure the accuracy of the outcomes, we developed computation methods to calculate the parameters of precision rate, recall rate, F-score and exact confidence interval.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.