We present the design, fabrication and characterization of the optical properties of one-dimensional metal-organic
photonic bandgaps (MO-PBGs) composed of a tetraphenyldiaminobiphenyl-based polymer and ultrathin electrically
continuous Cu layers. The fabricated MO-PBGs achieve a peak transmission of around 44% at 620 nm combined with
very large spectral, around 120 nm FWHM, and angular, more than 120° field-of-view, bandwidths. Using 140 fs pulses
at various wavelengths we have found up to 10 × enhancements in the nonlinear optical (NLO) properties of the MO-PBGs
when compared with the NLO response of ultrathin electrically continuous Cu layers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.