Continuously tunable single-mode emission of high performance quantum cascade (QC) lasers is achieved by application of the distributed feedback (DFB) principle. The devices are fabricated either as loss-coupled or index-coupled DFB lasers. Single-mode tuning ranges of approximately equals 100 nm have been measured in both of the atmospheric windows at emission wavelengths around (lambda) approximately equals 5 micrometer and 8 micrometer. Linear thermal tuning coefficients of 0.35 nm/K and 0.55 nm/K have been obtained above 200 K for (lambda) approximately equals 5 micrometer and 8 micrometer, respectively. The side-mode suppression ratio is better than 30 dB. Pulsed single-mode operation has been achieved up to room temperature with peak power levels of 60 mW. The lasers also operated single-mode in continuous wave at temperatures above liquid Nitrogen temperature; a single-mode tuning range of 70 nm has been measured in the temperature range from 20 K to 120 K. The gas sensing capabilities of the QC-laser have also been demonstrated using both direct absorption and wavelength modulation techniques. A pulsed, room temperature, QC-DFB laser operating at (lambda) approximately equals 7.8 micrometer was used to detect N2O diluted in N2. The detection limit was found to be approximately equals 500 ppb- m. In addition, the high resolution capability of the QC-DFB lasers (at 77 K) has been demonstrated via continuous, rapid- scan, direct absorption measurement of the Doppler limited R(16.5) lambda doublet of NO at (lambda) approximately equals 5.2 micrometer.
As performance levels for sophisticated electronic materials and device processing increase so to does the demand for versatile methods for on-line real time sensing of many process parameters. To that end we have developed a series of tunable semiconductor laser spectrometers for use in detection schemes of gas phase chemical species via infrared absorption spectroscopy. We report here on characterization of dual modulation schemes for enhanced sensitivity, interference fringe free, absorption spectroscopy data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.