Hexagonal boron nitride (h-BN), a two-dimensional (2D) ultrawide-bandgap semiconductor, has seen fast progress in the last decade and attracted tremendous attention and intensive investigation for its association with III-Nitride heterostructures. More specifically, the weak van der Waals interactions between the III-Nitrides heterostructures and 2D h-BN layers is a major enabler because it allows a mechanical release and transfer of freestanding membranes of III-Nitrides heterostructures to foreign substrates which open new pathways for III-Nitride heterogeneous integration and flexible devices. In this talk we will present the results of our work on LEDs grown on h-BN and their transfer to foreign substrates.
We present a critical study of LEDs on h-BN compared to the conventional LEDs on sapphire from materials characterizations, device fabrication to the device performances measurements performed before and after liftoff and transfer with and without intermediary adhesion layer to arbitrary substrates
Combined photonic and electronic systems require diverse devices to be co-integrated on a common platform. This heterogeneous integration is made possible through several separation and transfer methods where the functioning epilayers are essentially released from their growth substrate. The use of 2D layered h-BN as a mechanical release layer has been demonstrated to be a promising technique for the hybrid integration of III-nitride devices. In this talk we will give an overview of our results on wafer-scale van der Waals epitaxy by MOVPE of different III-N heterostructure devices such as LEDs, HEMTs, solar cells, sensors and photodetectors. Furthermore, mechanical release and transfer techniques of crack-free III-N devices on foreign substrates will be presented along with a comparison between the device performances before and after transfer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.