Single-mode and low-loss operation of optical waveguides is typically limited to a 200-500 nm wide wavelength range. The lower limit is the boundary between single and multi-mode operation, and the upper limit comes from the decreasing confinement of the fundamental mode inside the core, which eventually leads to too large bending radii, waveguide cross-talk and poor integration density. Many interferometric waveguide components, such as grating couplers and multi-mode interference (MMI) couplers, have even narrower wavelength range. This paper demonstrates photonic integrated circuits (PICs) with ultra-broadband operation from 1.2 to 2.4 μm wavelength based on 3 μm thick silicon-on-insulator (SOI) waveguides. Such thick waveguides maintain ultra-high mode confinement for over 1 μm bandwidth, which supports dense integration with low-loss crossings, Euler bends and total internal reflection (TIR) mirrors. While some parts of the PICs are based on multi-moded strip waveguides, mode filters with rib-waveguides allow to keep the PICs effectively single-moded. The focus of the paper is on passive PICs, although the platform also enables active components. Ultra-broadband test results are provided for long waveguide spirals and waveguide-fiber coupling, as well as for echelle gratings, arrayed waveguide gratings (AWGs) and different types of 2x2 couplers. Low-loss operation is demonstrated with continuous transmission spectra measured from 1.25 μm up to 2.4 μm wavelength, i.e. up to 1.15 μm bandwidth. The measured bandwidths are limited by the available measurement setup, rather than the PIC components themselves. Remaining challenges for ultra-broadband operation, such as anti-reflection coatings, are discussed. Applications for broadband operation in communication, imaging and sensing are also presented.
An example of continue breakthrough in Silicon Photonics (SiPh) is heterogeneous integration of active devices at wafer level not just to overcome the natural band-gap limit of the Silicon, but more importantly to exploit its high level of integration, significantly reducing packaging costs while driving down the cost of optical communications. In this paper, we describe a powerful combination and coupling of integrated 45°up-reflecting mirrors with longwavelength InP vertical cavity surface emitting lasers (VCSELs) used to develop a TX module with aggregated capacity up to 2-Tb/s capacity. The Photonic Integrated Circuit (PIC) designed and developed under the H2020 research project PASSION, heterogeneously embeds 40 VCSELs covering the C band on a single 3μm -thick Silicon-On-Insulator (SOI) multiplexer chip. The PIC exit-waveguide is also terminated with an up-reflective mirror and coupled with a fiber optic– based periscope, minimizing the form-factor while improving mechanical reliability of the overall packaged module. VCSELs are directly modulated with Discrete Multi-Tone (DMT) modulation format allowing 50 Gb/s rate per VCSEL. The PIC dimension is about 20 x 20 sqmm and power consumption < 5 pJ/bit at 2Tb/s. A Land Grid Array (LGA) interposer hosting the PIC sorrounded by 40 (flip-chip bonded) linear VCSEL drivers, providing electrical and thermal decoupling to the PIC is also described, achieving a compact and a thermally efficient packaging solution. Conveniently, a modular approach is pursued using the same identical 2-Tb/s TX module when building up a supermodule enabling an aggregating capacity up to 16 Tb/s on a single polarization state.
An SDN reconfigurable metro-access network based on modular photonic integrated ROADM nodes with edgecomputing for beyond 5G application is demonstrated. Multi-degree switching ROADM nodes are used at the metrocore level, while access network is constituted by low-cost 2-degree ROADM nodes. Network scalability per node is met via a modular design where new modules are added in a pay-as-you grow manner to meet capacity demands. We present PIC for wavelength selective switches used in the metro-core network. Two distinct integration approaches i.e. monolithic on InP and hybrid integration of SiPh with InP are followed to enable low loss switching.
Innovative photonic solutions designed and developed in the H2020 research project PASSION are presented for the future metropolitan area network (MAN) supporting different aggregated data traffic volumes and operating at heterogenous granularities. System performance evaluated both by simulations and experimentation regarding the proposed vertical cavity surface emitting laser (VCSEL) -based modular sliceable bandwidth/bitrate variable transceiver (S-BVT) are shown in realistic MANs organized by hierarchical levels with the crossing of multiple nodes characterized by new switching/aggregation technologies. The capabilities and challenges of the proposed cost-effective, energy-efficient and reduced footprint technological solutions will be demonstrated to face the request of huge throughput and traffic scalability.
This paper explains and demonstrates the unique properties of micron-size silicon-on-insulator (SOI) waveguides. It gives an overview of the silicon photonics research at VTT, as well as latest R&D highlights. The benefits of high mode confinement in rib and strip waveguides are described, reaching from low losses and small footprint to polarization independent operation and ultra-wide wavelength range from 1.2 to over 4 μm. Most of the results are from photonic integrated circuits (PICs) on 3 μm SOI, while a 25 Gbps link with a transceiver on 12 μm SOI is also reported. Wavelength multiplexing and filtering is demonstrated with some breakthrough performance in both echelle gratings and arrayed waveguide gratings. Lowest losses are below 1 dB and lowest cross-talk is below -35 dB. Progress towards monolithically integrated, broadband isolators is described, involving polarization splitters, reciprocal polarization rotators and nonreciprocal Faraday rotation in 3 μm SOI waveguide spirals. Quick update is presented about switches, modulators and Ge photodiodes up to 15 GHz bandwidth. Hybrid integration of lasers, modulators and photodiodes is also reported. The added value of trimmed SOI wafers and cavity-SOI wafers in Si photonics processing is addressed. Latest results also include up-reflecting mirrors with <0.5 dB loss, which support wafer-level testing and packaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.