Plenoptic (light-field) imaging is a technique that allows a simple CCD-based imaging device to acquire both spatially and angularly resolved information about the “light-field” from a scene. It requires a microlens array to be placed between the objective lens and the sensor of the imaging device1 and the images under each microlens (which typically span many pixels) can be computationally post-processed to shift perspective, digital refocus, extend the depth of field, manipulate the aperture synthetically and generate a depth map from a single image. Some of these capabilities are rigid functions that do not depend upon the scene and work by manipulating and combining a well-defined set of pixels in the raw image. However, depth mapping requires specific features in the scene to be identified and registered between consecutive microimages. This process requires that the image has sufficient features for the registration, and in the absence of such features the algorithms become less reliable and incorrect depths are generated. The aim of this study is to investigate the generation of depth-maps from light-field images of scenes with insufficient features for accurate registration, using projected patterns to impose a texture on the scene that provides sufficient landmarks for the registration methods.
A plenoptic imaging system records simultaneously the intensity and the direction of the rays of light. This additional information allows many post processing features such as 3D imaging, synthetic refocusing and potentially evaluation of wavefront aberrations. In this paper the effects of low order aberrations on a simple plenoptic imaging system have been investigated using a wave optics simulations approach.
The advancement in adaptive optics in recent years has increased the interest in the dynamic aberrations of the eye, including those introduced by the first optical surface provided by the tear film. A curvature sensing system to measure the dynamic topography of the tear film is described. This optical system was used to measure the
aberrations of the tear film on 14 eyes. The evolution of this surface is monitored through videos of the tear film topography. The effect on optical quality is studied from the time-evolution of the RMS wavefront error showing non-negligible aberration variations attributed to the tear film layer; the effect of tear film break-up on the ocular optical quality is also discussed. Furthermore, the aberration maps are decomposed into their constituent Zernike
components showing stronger contributions from 4th order terms, and also from those components with vertical symmetry which can be attributed to the effect of the eye lids on the tear film. Finally, the power spectra of the RMS wavefront error evolution show that the strongest contributions of the tear film aberrations are to be found at low frequencies, typically below 2Hz.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.