The South African astronomical community together with the international SALT community recently completed a process to detail a science strategy for SALT, the 10m international telescope that SAAO operates. After six years of science operations, the telescope is a very cost-effective large telescope science producer. The strategy was adopted by the SALT Board, and has already resulted in funding choices for the next stage of instrumentation. The SALT strategy intertwines with that of the SAAO and South African optical astronomy in general. This paper outlines the process followed, the main motivations and plans for the next stage, including risks and challenges. This paper in particular concentrates on the plans to making SAAO/SALT a major player in time domain astrophysics, one of three adopted strategic science focus areas. Plans include a novel design for a high-efficiency spectrograph serving transient follow-up, for which South Africa is well positioned; advanced
software aiming to make the whole mountain-top operate as a single transient machine; feasibility studies into revolutionizing SALT observations by utilizing the primary mirror's hundreds of square degree size uncorrected field-of-view. Other SPIE papers in this meeting describe these and other developments at SALT and SAAO in more detail
The MeerKAT radio telescope array, the Large Synoptic Survey Telescope (LSST), and eventually the Square Kilometer Array (SKA) will usher in a remarkable new era in astronomy, with thousands of transients being discovered and transmitted to the astronomical community in near-real-time each night. Immediate spectroscopic follow-up will be critical to understanding their early-time physics – a task to which the Southern African Large Telescope (SALT) is uniquely suited, given its southerly latitude and the 14-degree-diameter uncorrected field (patrol area) of its 10-m spherical primary mirror. A new telescope configuration is envisioned, incorporating multiple “mini-trackers” that range around a much larger patrol area of 35 degrees in diameter. Each mini-tracker is equipped with a small spherical aberration corrector feeding an efficient, low resolution spectrograph to perform contemporaneous follow-up observations.
SALT is a 10-m class optical telescope located in Sutherland, South Africa, owned by an international consortium and operated in fully queue-scheduled mode by the South African Astronomical Observatory.
Since the start of its science operations in late 2011 and particularly since the start of its integrated operations, all the key metrics have continued to increase at a significant pace, breaking records nearly every semester: program completion, completion levels per priority, number of observed blocks, and publications. In this paper we present an update of all of our performance metrics and the strategic changes that have been and are taking place, in line with the new Strategic Plan for SALT and the SAAO.
To take full advantage of the upcoming era of LSST, time-domain astronomy, and proposals that span multiple semesters and may have hundreds of targets, it was decided to upgrade the software for the Southern African Large Telescope. At the heart of the upgrade were changes to the MySQL database. A new web-based API allows an automated submission of targets of opportunities. This API is also used by a React-based single page application for real time updates of time allocations. The software upgrade also includes extensible web pages for monitoring data quality.
We report on commissioning the iodine absorption cell in the High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT). The low-, medium- and high-resolution (LR, MR and HR) modes of this fibre-fed, dual-channel, white-pupil vacuum échelle spectrograph have been in use by the SALT consortium since 2014, but the high-stability (HS) mode requires exoplanet expertise not available in our community. The original commercial HRS iodine cell was unsuitable due to an excess of iodine so it was replaced with a suitable custom-built cell. This cell was characterised at high signal-to-noise, at a resolution of 106, using the Fourier Transform Spectrometer at the National Institute of Standards and Technology before incorporation into the HRS HS bench. A combination of calibration frames and on-sky data were then used to produce an HRS-specific version of an IDL software package that derives precision radial velocities (PRVs) from spectra taken through an iodine cell. Bright stars with highly stable RVs observed during a short engineering campaign in May 2018 demonstrate that SALT HRS is currently capable of delivering Doppler precision of 4-7m/s.
The High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT) is a dual beam, fiber-fed echelle spectrograph providing high resolution capabilities to the SALT observing community. We describe the available data reduction tools and the procedures put in place for regular monitoring of the data quality from the spectrograph. Data reductions are carried out through the pyhrs package. The data characteristics and instrument stability are reported as part of the SALT Dashboard to help monitor the performance of the instrument.
The Robert Stobie Spectrograph is currently the main workhorse spectroscopic instrument on the Southern African Large Telescope (SALT), which has been undergoing regular scientific operations since 2011. The visible beam of the RSS was designed to perform polarimetry in all of its modes, imaging and grating spectroscopy (with Multi Object Spectroscopy capability) from 3200 to 9000 Å. The polarimetric field of view is 4×8 arcmin. Initial early commissioning of the polarimetric modes was stalled in 2011 because a coupling fluid leak developed in the polarizing beamsplitter after less than a year of operation. As a result, it was decided to redesign the beamsplitter to use a different optical couplant. This was complicated by the unusual thermal expansion properties of the calcite optic, and by the necessity of aligning the individual elements in the beamsplitter mosaic (RSS is the first instrument to use a mosaic beamsplitter). Laboratory work selected a new couplant: a gel, Nye 451. Testing was completed with satisfactory results on a "sacrificial" calcite prism with the same geometry as an actual mosaic element. A successful assembly was performed and the beamsplitter was re-installed in SALT in mid-2015. We describe results from the renewed commissioning efforts to characterize polarimetry from SALT and include some early performance verification science.
The differential Optical Transfer Function (dOTF) is a focal plane wavefront sensing method that uses a diversity in the pupil plane to generate two different focal plane images. The difference of their Fourier transforms recovers the complex amplitude of the pupil down to the spatial scale of the diversity. We produce two simultaneous PSF images with diversity using a polarizing filter at the edge of the telescope pupil, and a polarization camera to simultaneously record the two images. Here we present the first on-sky demonstration of polarization dOTF at the 1.0m South African Astronomical Observatory telescope in Sutherland, and our attempt to validate it with simultaneous Shack-Hartmann wavefront sensor images.
SALT is a 10-m class optical telescope located in Sutherland, South Africa. We present an update on all observatory performance metrics since the start of full science operations in late 2011, as well as key statistics describing the science efficiency and output of SALT, including the completion fractions of observations per priority class, and analysis of the more than 140 refereed papers to date. After addressing technical challenges and streamlining operations, these first years of full operations at SALT have seen good and consistently increasing rates of completion of high priority observations and, in particular, very cost-effective production of science publications.
SALT, the Southern African Large Telescope, is a very cost effective 10 m class telescope. The operations cost per refereed science paper is currently approximately $70,000. To achieve this competitive advantage, specific design tradeoffs had to be made leading to technical constraints. On the other hand, the telescope has many advantages, such as being able to rapidly switch between different instruments and observing modes during the night. We provide details of the technical and operational constraints and how they were dealt with, by applying the theory of constraints, to substantially improve the observation throughput during the last semester.
The efficient operation of a telescope requires awareness of its performance on a daily and long-term basis. This paper outlines the Fault Tracker, WebSAMMI and the Dashboard used by the Southern African Large Telescope (SALT) to achieve this aim. Faults are mostly logged automatically, but the Fault Tracker allows users to add and edit faults. The SALT Astronomer and SALT Operator record weather conditions and telescope usage with WebSAMMI. Various efficiency metrics are shown for different time periods on the Dashboard. A kiosk mode for displaying on a public screen is included. Possible applications for other telescopes are discussed.
We report here on the software Hack Day organised at the 2014 SPIE conference on Astronomical Telescopes and Instrumentation in Montréal. The first ever Hack Day to take place at an SPIE event, the aim of the day was to bring together developers to collaborate on innovative solutions to problems of their choice. Such events have proliferated in the technology community, providing opportunities to showcase, share and learn skills. In academic environments, these events are often also instrumental in building community beyond the limits of national borders, institutions and projects. We show examples of projects the participants worked on, and provide some lessons learned for future events.
Monitoring the performance of a facility is critical to successful scientific operations, and even more so, for queue based telescopes such as SALT. We highlight the steps that have been undertaken in order to monitor the performance of the Southern African Large Telescope from proposal submission to on-sky observations, and finally to publication. A suite of dedicated software tools has been produced in order to monitor the performance of the telescope, weather conditions, and scientific productivity. We report on some of the key metrics for SALT since the start of science operations to provide a baseline for its current performance. After taking account that science operations only began in September 2011, the number of papers produced by SALT since that time is similar to other 8m class observatories at the beginning of their operations.
The Southern African Large Telescope (SALT) High Resolution Spectrograph (HRS) is a fibre-fed R4 échelle
spectrograph employing a white pupil design with red and blue channels for wavelength coverage from 370–890nm.
The instrument has four modes, each with object and sky fibres: Low (R~15000), Medium (R~40000) and High
Resolution (R~65000), as well as a High Stability mode for enhanced radial velocity precision at R~65000. The High
Stability mode contains a fibre double-scrambler and offers optional simultaneous Th-Ar arc injection, or the inclusion
of an iodine cell in the beam. The LR mode has unsliced 500μm fibres and makes provision for nod-and-shuffle for
improved background subtraction. The MR mode also uses 500μm fibres, while the HR and HS fibres are 350μm. The
latter three modes employ modified Bowen-Walraven image-slicers to subdivide each fibre into three slices. All but the
High Stability bench is sealed within a vacuum tank, which itself is enclosed in an interlocking Styrostone enclosure, to
insulate the spectrograph against temperature and atmospheric pressure variations. The Fibre Instrument Feed (FIF)
couples the four pairs of fibres to the telescope focal plane and allows the selection of the appropriate fibre pair for a
given mode, and adjustment of the fibre separation to optimally position the sky fibre. The HRS employs a
photomultiplier tube for an exposure meter and has a dedicated auto-guider attached to the FIF. We report here on the
commissioning results and overall instrument performance since achieving first light on 28 September 2013.
KEYWORDS: Telescopes, Astronomy, Observatories, Atmospheric monitoring, Global system for mobile communications, Atmospheric turbulence, Large telescopes, Adaptive optics, Infrared telescopes, Reliability
We present a comprehensive review of the first two years of a site monitoring campaign at the South African Astronomical Observatory (SAAO) located outside Sutherland, South Africa. This campaign is in support of the Southern African Large Telescope (SALT), a 11-metre, fixed-elevation, optical telescope located at SAAO . The heart of this observing campaign involves continuous monitoring of the site by a MASS-DIMM instrument. The MASS-DIMM has been in routine use since March 2010 and its operation is now fully automated. At the beginning of this campaign, simultaneous observations were also made by a SLODAR instrument, which allows high resolution observations of the lower atmosphere. In August 2011 a two week campaign was carried out with a two-channel Generalized Seeing Monitor (GSM) telescope along with a lunar limb profiler (Profileur Bord Lunaire; PBL). Combined with the MASS-DIMM data these observations provide multiple independent measurements of atmospheric turbulence as a function of height. They also help improve the calibration of our site for more direct comparison to other major astronomical observatories. Our results so far indicate that the atmospheric conditions at the SAAO Sutherland site have deteriorated compared to past measurements. The ground layer accounts for the majority of the integrated seeing, while the free atmosphere seeing is comparable with other major sites.
The Southern African Large Telescope (SALT) began its re-commissioning phase in April 2011 following the
completion of remedial engineering work on the telescope and the major science instrument, the Robert Stobie
Spectrograph (RSS). The engineering work required modifications to the spherical aberration corrector, in order to
improve the telescope’s image quality, and RSS, to improve its throughput. Positive test results included delivery of
sub-arcsecond images, essentially meeting the original telescope image quality specifications and exhibiting none of
the previous field-dependent aberrations, while the RSS has shown greatly improved efficiency performance. SALT
has since transitioned to science operations, as from 1 September 2011, following the first open call for charged
science proposals from the SALT partners. This paper discusses the current performance of SALT and it First
Generation instruments, some initial science results, the proposal process and the operational model for the
telescope.
The Southern African Large Telescope (SALT), located at the South African Astronomical Observatory (SAAO) site near Sutherland, South Africa, is an 11-metre fixed-elevation telescope currently operating at UV-visible wavelengths (320-950 nm) with a near-infrared extension (850-1700 nm) due in the near future. SALT does not currently have an adaptive optics (AO) system and a feasibility study for adding one is under way. Using results from an on-going site monitoring campaign at the SAAO we have begun carrying out simulations to investigate how different AO systems might perform and could be optimized for SALT. We will present the parameters of an optimization study and performance results for a single on-axis natural guide star (NGS) AO system on SALT for operation at both visible (R) and near-IR (J and H) wavelengths.
PySALT is the python/PyRAF-based data reduction and analysis pipeline for the Southern African Large Telescope
(SALT), a modern 10m class telescope with a large user community consisting of 13 partner institutions. The two first
generation instruments on SALT are SALTICAM, a wide-field imager, and the Robert Stobie Spectrograph (RSS). Along
with traditional imaging and spectroscopy modes, these instruments provide a wide range of observing modes, including
Fabry-Perot imaging, polarimetric observations, and high-speed observations. Due to the large user community, resources
available, and unique observational modes of SALT, the development of reduction and analysis software is key to
maximizing the scientific return of the telescope. PySALT is developed in the Python/PyRAF environment and takes
advantage of a large library of open-source astronomical software. The goals in the development of PySALT are: (1)
Provide science quality reductions for the major operational modes of SALT, (2) Create analysis tools for the unique
modes of SALT, and (3) Create a framework for the archiving and distribution of SALT data. The data reduction software
currently provides support for the reduction and analysis of regular imaging, high-speed imaging, and long slit
spectroscopy with planned support for multi-object spectroscopy, high-speed spectroscopy, Fabry-Perot imaging, and
polarimetric data sets. We will describe the development and current status of PySALT and highlight its benefits through
early scientific results from SALT.
While time resolved astronomical observations are not new, the extension of such studies to sub-second time resolution
is and has resulted in the opening of a new observational frontier, High Time Resolution Astronomy (HTRA). HTRA
studies are well suited to objects like compact binary stars (CVs and X-ray binaries) and pulsars, while asteroseismology
of pulsating stars, occultations, transits and the study of transients, will all benefit from such HTRA studies.
HTRA has been a SALT science driver from the outset and the first-light instruments, namely the UV-VIS imager,
SALTICAM, and the multi-purpose Robert Stobie Spectrograph (RSS), both have high time resolution modes. These are
described, together with some observational examples. We also discuss the commissioning observations with the photon
counting Berkeley Visible Image Tube camera (BVIT) on SALT. Finally we describe the software tools, developed in
Python, to reduce SALT time resolved observations.
The Southern African Large Telescope is nearing the end of its commissioning phase and scientific performance
verification programmes began in 2006 with two of its First Generation UV-visible instruments, the imaging camera,
SALTICAM, and the multi-mode Robert Stobie Spectrograph (RSS). Both instruments are seeing limited and designed to
operate in the UV-visible region (320 - 900 nm). This paper reviews the innovative aspects of the designs of these
instruments and discusses the commissioning experience to date, illustrated by some initial scientific commissioning
results. These include long-slit and multi-object spectroscopy, spectropolarimetry, Fabry-Perot imaging spectroscopy and
high-speed photometry. Early spectroscopic commissioning results uncovered a serious underperformance in the
throughput of RSS, particularly at wavelengths < 400nm. We discuss the lengthy diagnosis and eventual removal of this
problem, which was traced to a material incompatibility issue involving index-matching optical coupling fluid. Finally,
we briefly discuss the present status of the third and final First Generation instrument, a vacuum enclosed fibre-fed high
resolution, dual beam, white pupil echelle spectrograph, SALT HRS, currently under construction.
KEYWORDS: Mirrors, Telescopes, Monochromatic aberrations, Image quality, Cameras, Simulation of CCA and DLA aggregates, Image segmentation, Wavefront sensors, Wavefronts, Interfaces
Construction of the Southern African Large Telescope (SALT) was largely completed by the end of 2005 and since then
it has been in intensive commissioning. This has now almost been completed except for the telescope's image quality
which shows optical aberrations, chiefly a focus gradient across the focal plane, along with astigmatism and other less
significant aberrations. This paper describes the optical systems engineering investigation that has been conducted since
early 2006 to diagnose the problem. A rigorous approach has been followed which has entailed breaking down the
system into the major sub-systems and subjecting them to testing on an individual basis. Significant progress has been
achieved with many components of the optical system shown to be operating correctly. The fault has been isolated to a
major optical sub-system. We present the results obtained so far, and discuss what remains to be done.
Segmented primary mirrors dominate the current generation of 10m class telescopes as well as the designs for the next
generation of Extremely Large Telescopes (ELT's). The complex nature of these telescopes is demonstrated by the long
time periods associated with their commissioning and the difficulty of performing high precision optical alignments.
However, additional tools to provide in situ measurements of their optical alignment can be provided by making use of
the individual mirrors of a segmented primary; with the ability to move in six degrees of freedom, the individual mirrors
can be deployed to trace multiple optical paths through the telescope. In this paper we describe how it is possible to use
the segments themselves to create a number of Hartmann masks that allow focus and other aberrations to be measured
using a standard imaging camera rather than a dedicated wavefront sensor. The Southern African Large Telescope
(SALT), with a primary mirror composed of 91 1m segments, is used as an example. The segments were arranged to
create eight Hartmann masks to measure the optical alignment. Through imaging data obtained at the telescope, the
sensitivity of this method to changes in focus along with aberrations inherent in the system is demonstrated through
Zernike polynomial fits to the observed patterns. Finally, we present simulations of possible patterns for use on future
ELT's.
We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The
spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can
be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including
a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings
(VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes
throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances
throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain
instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A
740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral
resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH
gratings yields throughput gain-factors of up to 3.5.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.