SignificanceStatistical inference in functional neuroimaging is complicated by the multiple testing problem and spatial autocorrelation. Common methods in functional magnetic resonance imaging to control the familywise error rate (FWER) include random field theory (RFT) and permutation testing. The ability of these methods to control the FWER in optical neuroimaging has not been evaluated.AimWe attempt to control the FWER in optical intrinsic signal imaging resting-state functional connectivity using both RFT and permutation inference at a nominal value of 0.05. The FWER was derived using a mass empirical analysis of real data in which the null is known to be true.ApproachData from normal mice were repeatedly divided into two groups, and differences between functional connectivity maps were calculated with pixel-wise t-tests. As the null hypothesis was always true, all positives were false positives.ResultsGaussian RFT resulted in a higher than expected FWER with either cluster-based (0.15) or pixel-based (0.62) methods. t-distribution RFT could achieve FWERs of 0.05 (cluster-based or pixel-based). Permutation inference always controlled the FWER.ConclusionsRFT can lead to highly inflated FWERs. Although t-distribution RFT can be accurate, it is sensitive to statistical assumptions. Permutation inference is robust to statistical errors and accurately controls the FWER.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.