Incom Inc. is developing and commercializing microchannel plate (MCP) electron multiplier devices made from leadfree glass capillary array (GCA) substrates that are functionalized using atomic layer deposition (ALD) thin film coating technology. Notable benefits over conventional lead-oxide based MCP technology are larger MCP size, high and stable gain, low dark counts and gamma-ray sensitivity, improved mechanical and thermal stability, and the unique ability to tune the MCP resistance and electron amplification characteristics over a much wider range and independently from the glass substrate. Incom now routinely produces ALD-GCA-MCPs with 10 and 20 m pore size at MCP dimensions up to 20 cm x 20 cm. ALD-GCA-MCPs are used for photon counting and charged particle detection in analytical instruments, high energy physics, nuclear physics, and space science applications. For future astronomical applications such as LUVOIR, HabEx, and CETUS, large-area, high-performance MCP electron amplifiers are paired with high-performance cross-strip readout systems and integrated into large format (≥ 50 mm sq.) photodetectors operating in the UV and optical regimes. Incom’s large area ALD-MCP-GCA technology is critical for realizing such large format photodetectors. In this paper, we provide a brief update on recent developments addressing the quality of the glass substrate as well as the thermal stability of the MCPs.
We present progress in the development of sealed tube imaging detectors using the cross strip (XS) readout and microchannel plates activated by atomic layer deposition (ALD). Microchannel plate detectors are important tools for photon counting spectroscopy and imaging in astronomical, biological, high energy physics and remote sensing applications 1-15. Current UV instrument concepts under study for NASA including the Large UV/Optical/IR Surveyor (LUVOIR)16, the Habitable Exoplanet Imaging Mission (HABEX)16, and Cosmic Evolution Through UV Spectroscopy (CETUS)16 have also envisaged MCP detector systems. Many of these address sensing beyond 105 nm, and require large area high resolution sealed tube devices for ease of integration and handling. To satisfy these we are implementing high temperature co-fired ceramic (HTCC) cross-strip anode readouts in sealed tubes coupled with encoding electronics that enable high spatial resolution (<20 μm) at low gain (106) and over large formats (5 to 10 cm) with high dynamic range (< 5 MHz). ALD microchannel plates have also been incorporated to deliver stable gain and imaging performance with low background (<0.05 events cm-2sec-1) and reduced sensitivity to gamma ray background.
For future astronomical applications we have been developing cross-strip anodes with electronic readouts integrated with large format (≥ 50 mm) sealed tubes and photocathodes covering the UV and optical regimes. These large format devices will be important for the next generation of moderate and large NASA astrophysics instruments under study (e.g. LUVOIR, HabEx, CETUS), as well as ground based focal plane instruments. Microchannel plates (MCPs) are used as electron multipliers in these devices. They amplify the detected photon signal to a charge cloud on order of a million electrons, which is then sensed through the imaging readout. A recent enhancement comes by way of incorporating resistive and secondary emissive layers to borosilicate capillary arrays utilizing atomic layer deposition (ALD) processing techniques. The borosilicate substrates are more robust than traditional MCPs, allowing for large formats (20 x 20 cm), while also supporting 10-micron pores (capillaries). We have successfully integrated this type of MCP into 50 mm aperture sealed tube devices for the first time. These devices show stable, uniform gain, and can provide very good event timing accuracy. Spatial resolution of better than 20 microns can be achieved with these MCPs, providing more than 2k x 2k resolution elements for a 50mm device. Compared with the current generation of MCPs, the ALDborosilicate MCPs have shown an order of magnitude increase in lifetime stability gain retention within the vacuum sealed device and long-term preservation of the photocathode efficiency.
Microchannel plate based detectors are widely used for photon counting spectroscopy and imaging in astronomical, high energy physics and remote sensing applications1-15. We present progress in the development of imaging cross strip readout detectors using novel microchannel plates functionalized by atomic layer deposition (ALD). ALD microchannel plates have established formats of 10 cm with 10 μm pore sizes and 20 cm with 20 μm pores. ALD MCPs show with high quantum efficiency (>50% @115 nm) using opaque alkali halide photocathodes and very low background levels (0.05 events cm-2) have been achieved. Readout systems have also evolved and now cross-strip anodes and encoding electronics enable high spatial resolution (<20 μm) at low gain (106) and over large formats (10 cm) with high dynamic range (>5 MHz). These characteristics are essential for UV instrument concepts currently under study for NASA including the Large UV/Optical/IR Surveyor (LUVOIR)16, the Habitable Exoplanet Imaging Mission (HABEX)16, and Cosmic Evolution Through UV Spectroscopy (CETUS)16.
Incom Inc. is developing and commercializing a new type of microchannel plate (MCP) electron multiplier, as well as MCP-based photodetectors such as the Large-Area Picosecond Photodetector, LAPPD(TM), and the High-Resolution Picosecond Photodetector, HRPPD. This new class of MCPs is called “ALD-GCA-MCPs” because these are MCPs that are made from glass capillary arrays (GCA) – glass plates with a regular array of hollow glass capillaries – that are functionalized using atomic layer deposition (ALD) thin film coating technology. ALD-GCA-MCPs are a technology advancement that affords MCPs with significantly improved performance, as compared to conventional MCPs. We will provide a brief ALD-GCA-MCP technology overview highlighting the current state of the art of Incom’s ALD-GCA-MCP technology, as well as ongoing developments addressing the GCA glass substrate, the resistive and secondary-electron-emissive ALD coatings, and their implications for detectors used in astronomical applications.
We present recent progress in the development of novel microchannel plates (MCPs) manufactured using standard lead glass and with borosilicate glass microcapillary arrays functionalized using Atomic Layer Deposition (ALD) technology. Standard glass MCPs have achieved high quantum efficiency (~60% @115 nm & 65 nm) using opaque alkali halide photocathodes. Enhanced performance standard glass MCPs have also been demonstrated with no fixed pattern noise due to construction defects. Novel borosilicate glass atomic layer deposited MCPs up to 20 cm format show good overall response uniformity, tight pulse height distributions and very low background levels (0.05 events cm-2). Spatial resolutions of the order of 20 μm are demonstrated with 10 μm pore atomic layer deposited MCPs, and their fixed pattern noise has been significantly reduced. Bialkali cathodes in sealed tubes show high (<30%) efficiency at ~200 nm and long wavelength cutoffs at ~360 nm have been engineered.
Incom, Inc. is now producing commercially available Large Area Picosecond Photo-Detectors (LAPPD™) usable in applications by early adopters. The first generation LAPPD™ is an all-glass 230 x 220 x 22 mm3 flat panel photodetector with a chevron stack of glass capillary array microchannel plates functionalized by atomic layer deposition, a semitransparent bi-alkali photocathode, and a strip-line anode. The photodetector is being optimized for applications requiring picosecond timing and millimeter spatial resolution and has achieved single photoelectron (PE) timing resolutions of α≤52 ps. Typical performance metrics include electron gains of 107 at 1 kV per MCP, low dark noise rates (15-30 Hz/cm2 at moderate gains), single PE spatial response along and across strips of 1.8 mm and 0.76 mm respectively and quantum efficiencies that are typically ≥20% at 365 nm. Changes to the “baseline” LAPPD™ are under development to optimize the photodetector for applications requiring very high spatial resolutions.
Incom Inc. is developing and commercializing a novel type of microchannel plate (MCP) electron multipliers. These new devices are called “ALD-GCA-MCPs” and are made from glass capillary arrays (GCA), glass plates with a regular array of hollow glass capillaries that are functionalized using atomic layer deposition (ALD) thin film coating technology. ALD-GCA-MCPs are a technology advancement that affords MCPs with significantly improved performance, as compared to conventional MCPs. Notable benefits over conventional lead-oxide based MCPs are larger size, high and stable gain, low dark counts and gamma-ray sensitivity, improved mechanical stability, and the unique ability to tune the MCP resistance and electron amplification characteristics over a much wider range and independent from the glass substrate. Incom now routinely produces ALD-GCA-MCPs with 10 and 20 μm pore size at MCP dimensions up to 20 cm x 20 cm. The MCPs show a number of favorable characteristics, such as 3x lower gamma-ray sensitivity compared to conventional MPCs, low background (< 0.05 cts/s/cm2), and stable, high gains (<1×104 for single MCP and <1×107 for a chevron pair configuration, at 1000V/MCP). ALD-GCA-MCPs find use in a variety of photon counting applications and are particularly suited for charged particle detection that requires high timing and spatial resolution, such as Ion time-of-flight (TOF), electron spectroscopies, analytical and space instruments, and MCP-based photomultipliers such as the Large-Area Picosecond Photodetector (LAPPDTM), which is also being developed by Incom Inc. In this paper, we provide a brief technology overview highlighting the current state of the art of Incom’s ALD-GCA-MCP technology, as well as current and future development efforts that address the GCA glass substrate as well as the resistive and electron emissive ALD coatings.
In proton therapy treatment, proton residual energy after transmission through the treatment target may be determined by measuring sub-relativistic transmitted proton time-of-flight velocity and hence the residual energy. We have begun developing this method by conducting proton beam tests using Large Area Picosecond Photon Detectors (LAPPDs) which we have been developing for High Energy and Nuclear Physics Applications. LAPPDs are 20cm x 20cm area Micro Channel Plate Photomultiplier Tubes (MCP-PMTs) with millimeter-scale spatial resolution, good quantum efficiency and outstanding timing resolution of ≤70 picoseconds rms for single photoelectrons. We have constructed a time-of-flight telescope using a pair of LAPPDs at 10 cm separation, and have carried out our first tests of this telescope at the Massachusetts General Hospital's Francis Burr Proton Therapy Center. Treatment protons are sub-relativistic, so precise timing resolution can be combined with paired imaging detectors in a compact configuration while still yielding high accuracy in proton residual energy measurements through proton velocity determination from nearly monoenergetic protons. This can be done either for proton bunches or for individual protons. Tests were performed both in "ionization mode" using only the Microchannel Plates to detect the proton bunch structure and also in "photodetection mode" using nanosecond-decay-time quenched plastic scintillators to excite the photocathode within each of the paired LAPPDs. Data acquisition was performed using a remotely operated oscilloscope in our first beam test, and using 5Gsps DRS4 Evaluation Board waveform digitizers in our second test, in each case reading out both ends of single microstrips from among the 30 within an LAPPD. First results for this method and future plans are presented.
Microchannel plates have been made by combining glass capillary substrates with thin films. The films impart the resistance and secondary electron emission (SEE) properties of the MCP. This approach permits separate choices for the type of glass, the MCP resistance and the SEE material. For example, the glass may be chosen to provide mechanical strength, a high open area ratio, or a low potassium-40 concentration to minimize dark rates. The resistive film composition may be tuned to provide the desired resistance, depending on the power budget and anticipated count rate. Finally, the SEE material may be chosen by balancing requirements for gain, long term stability of gain with extracted charge, and tolerance to air exposure.
Microchannel plates have been fabricated by Incom Inc., in collaboration with Argonne National Laboratory and UC Berkeley. Glass substrates with microchannel diameters of 10 and 20 microns have been used, typically with a length to diameter ratio of 60:1. Thin films for resistance and SEE are applied using Atomic Layer Deposition (ALD). The ALD technique provides a film with uniform thickness throughout the high aspect ratio microchannels. MCPs have been made in sizes up to 8”x8”. This three-component method for manufacturing MCPs also makes non-planar, curved MCPs possible.
Life testing results will be presented for 10 and 20 micron, 60:1 l/d ratio MCPs, with an aluminum oxide SEE film and two types of glass substrates. Results will include measurements of resistance, dark count rates, gain, and pulse height distributions as a function of extracted charge.
Atomic layer deposition (ALD) has enabled the development of a new technology for fabricating microchannel plates (MCPs) with improved performance that offer transformative benefits to a wide variety of applications. Incom uses a “hollow-core” process for fabricating glass capillary array (GCA) plates consisting of millions of micrometer-sized glass microchannels fused together in a regular pattern. The resistive and secondary electron emissive (SEE) functions necessary for electron amplification are applied to the GCA microchannels by ALD, which – in contrast to conventional MCP manufacturing– enables independent tuning of both resistance and SEE to maximize and customize MCP performance.
Incom is currently developing MCPs that operate at cryogenic temperatures and across wide temperature ranges. The resistive layers in both, conventional and ALD-MCPs, exhibit semiconductor-like behavior and therefore a negative thermal coefficient of resistance (TCR): when the MCP is cooled, the resistance increases, and when heated, the resistance drops. Consequently, the resistance of each MCP must be tailored for the intended operating temperature. This sensitivity to temperature changes presents a challenge for many terrestrial and space based applications.
The resistivity of the ALD-nanocomposite material can be tuned over a wide range. The material’s (thermo-) electrical properties depend on film thickness, composition, nanostructure, and the chemical nature of the dielectric and metal components. We show how the structure-property relationships developed in this work can be used to design MCPs that operate reliably at cryogenic temperatures. We also present data on how the resistive material’s TCR characteristics can be improved to enable MCPs operating across wider temperature ranges than currently possible.
The increasing availability of small satellites such as CubeSats have improved low cost access to space. New scientific measurements may be made, and new concepts may be tested for larger scale missions in the future. Particle detection instruments in conventional size spacecraft have to meet significant constraints on mass, power and volume. These constraints are more substantial in the CubeSat platform. Microchannel plate (MCP) electron multipliers are frequently used in particle detection instruments because of their high gain, low mass, and thin planar configuration. However, non-planar MCPs can be used to improve instrument performance and make better use of available volume by adopting a shape that is compatible with the natural instrument geometry. Non-planar MCPs have been made in this work using a novel method, in which a glass microchannel substrate is coated with thin films that provide the necessary resistive and secondary electron emissive properties. The glass substrates were first slumped at a high temperature to a mandrel of the desired shape, after which the thin films were applied. The MCPs were cylindrically curved, with radii of curvature of 75 mm and 20 mm, and with angular spans of 90 degrees and 180 degrees respectively. The azimuthal gain and resistance uniformity was measured and will be presented.
Bundles of hollow glass capillaries can be tapered to produce quasi-focusing x-ray optics. These optics are known
as Kumakhov lenses. These optics are interesting for lab-based sources because they can be used to collimate
and concentrate x-rays originating from a point, such as a laser focus or an electron-beam focus in a microtube.
We report pilot production and advanced development performance results achieved for Large Area Picosecond
Photodetectors (LAPPD). The LAPPD is a microchannel plate (MCP) based photodetector, capable of imaging with
single-photon sensitivity at high spatial and temporal resolutions in a hermetic package with an active area of 400 square
centimeters. In December 2015, Incom Inc. completed installation of equipment and facilities for demonstration of
early stage pilot production of LAPPD. Initial fabrication trials commenced in January 2016. The “baseline” LAPPD
employs an all-glass hermetic package with top and bottom plates and sidewalls made of borosilicate float glass. Signals
are generated by a bi-alkali Na2KSb photocathode and amplified with a stacked chevron pair of “next generation” MCPs
produced by applying resistive and emissive atomic layer deposition coatings to borosilicate glass capillary array (GCA)
substrates. Signals are collected on RF strip-line anodes applied to the bottom plates which exit the detector via pinfree
hermetic seals under the side walls. Prior tests show that LAPPDs have electron gains greater than 107, submillimeter
space resolution for large pulses and several mm for single photons, time resolutions of 50 picoseconds for
single photons, predicted resolution of less than 5 picoseconds for large pulses, high stability versus charge extraction,
and good uniformity. LAPPD performance results for product produced during the first half of 2016 will be reviewed.
Recent advances in the development of LAPPD will also be reviewed, as the baseline design is adapted to meet the
requirements for a wide range of emerging application. These include a novel ceramic package design, ALD coated
MCPs optimized to have a low temperature coefficient of resistance (TCR) and further advances to adapt the LAPPD
for cryogenic applications using Liquid Argon (LAr). These developments will meet the needs for DOE-supported RD
for the Deep Underground Neutrino Experiment (DUNE), nuclear physics applications such as EIC, medical, homeland
security and astronomical applications for direct and indirect photon detection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.