High-power single-mode laser diodes around 795 nm are widely used in applications such as Rb atomic clocks and nuclear magnetic resonance imaging. We simulate a high-power single-mode semiconductor laser around 795 nm based on a supersymmetric structure. In the lateral direction, the mode stability characteristics are investigated by varying the three waveguides widths and the distances between the middle main waveguide and the two sub-waveguides. Since the left and right waveguides have different widths, the optimal distance from them to the main waveguide is also different. In order to ensure the single-mode operating of the laser, there is a pair of optimized distances from the left and right waveguides to the main waveguide. The distances from the left and right waveguides to the main waveguide are 1 μm and 1.2 μm, respectively, when the widths of the left waveguide, right waveguide and main waveguide are set as 2.3 μm, 3.5 μm and 6 μm, respectively. In the longitudinal direction, a laterally-coupled grating structure is used to achieve longitudinal mode selection. Such lasers are expected to be the next generation of high-power, narrow-linewidth, singlemode laser diodes.
Microdisks and micro-rings are commonly used micro-optical devices that greatly enhance the interaction between light and matter within a cavity due to their high-quality factor and small mode volume, making them widely used in microcavity optical sensing. By introducing parity-time (PT) symmetric structures into the microcavity, the coupling efficiency of the optical field inside the cavity can be improved, which is conducive to obtaining higher sensing sensitivity. We theoretically verify the feasibility of using a PT-symmetric micro-ring coupled microdisk composite cavity as an active sensor based on the characteristics of exceptional point (EP) enhanced sensing in PT-symmetric systems. Gain is introduced to the microdisk cavity by injecting current until the system undergoes PT symmetry breaking, i.e., when the sensor is at the EP, the transmission of light will exhibit a nonlinear enhancement effect due to the degeneracy of eigenvalues and corresponding eigenvectors of the system, making the signal more sensitive to changes in the sensing medium. The results obtained through the finite difference time domain method show that the intensity sensitivity of the PT-symmetric microcavity at the EP is improved by about 11.8 times compared with the conventional microcavity when the working wavelength is in the range of communication band and different concentrations of the same gas are injected into the air, which is expected to provide reference and insight for the further development of microcavities for refractive index sensing.
The beam quality of the semiconductor laser is influenced by the structure of the laser's own waveguide as well as the beam shaping system. The cylindrical lens is used to compress the laser beam in the fast-axis direction in optically pumped source applications. Significant spectral deterioration occurs during the shaping of the laser beam. The spectrum of the laser split into some small peaks and misaligned with the absorption peaks of the crystal, resulting in a decrease in the overall absorption efficiency. In this paper, the reasons of spectral deterioration are investigated, and the spectral characteristics are optimized by varying the the output facet coating film’s reflectivity of the semiconductor laser chip. An improvement scheme for spectral deterioration of high power semiconductor lasers after beam shaping is proposed. The experiment results shows that the deterioration of the spectrum is significantly eliminated when the coating film’s reflectivity is adjusted from 0.88% to nearly 15%. A 976nm high power semiconductor laser chip with 7.16% reflectivity coating film has the highest slope efficiency. Due to a trade-off between spectral quality and the slope efficiency, it is necessary to choose an appropriate coating film’s reflectivity on the output facet surface to achieve both high output power and good spectra. This has important application prospects in future solid-state laser pump source applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.