NASA’s Habitable Worlds Observatory will consist of a segmented telescope and high contrast coronagraph to characterize exoplanets for habitability. Achieving this objective requires an ultra-stable telescope with wavefront stability of picometers in certain critical modes. The NASA funded Ultra-Stable Large Telescope Research and Analysis – Technology Maturation program has matured key component-level technologies in 10 areas spanning an “ultra-stable” architecture, including active components like segment edge sensors, actuators and thermal hardware, passive components like low distortion mirrors and stable structures, and supporting capabilities like precision metrology. This paper will summarize the final results from the four-year ULTRA-TM program, including advancements in performance and/or path-to-flight readiness, TRL/MRL maturation, and recommendations for future work.
NASA’s Habitable Worlds Observatory will consist of a segmented telescope and high contrast coronagraph to characterize exoplanets for habitability. Achieving this objective requires an ultra-stable telescope with wavefront stability of picometers in certain critical modes. The NASA funded Ultra-Stable Large Telescope Research and Analysis – Technology Maturation program continues to mature key component-level technologies for this new regime of “ultra-stable optical systems,” including active components like segment edge sensors, actuators and thermal hardware, passive components like low distortion mirrors and stable structures, and supporting capabilities like precision metrology. This paper will present an update to the latest results from hardware testbeds and simulations in the areas listed above. It will also contain a correction to previously published results of Ball’s Integrated Demo, which consists of a capacitive sensor and three actuators operating in closed loop.
The recently released Astro2020 Decadal Survey recommends a large IR/O/UV space telescope that can observe potentially habitable exoplanets. Achieving this goal requires a telescope with wavefront stability on the order of picometers in some modes. The Ultra-Stable Large Telescope Research and Analysis – Technology Maturation (ULTRATM) program has matured key component-level technologies for this new regime of “ultra-stable optical systems,” including active components like segment edge sensors, actuators and thermal sensing and control hardware, as well as passive components like low distortion mirror mounts and stable composites for structures. Hardware testbeds have demonstrated component performance in the desired regime and with path-to-flight properties and simulations have applied those results to the flight system. These component level demonstrations are a critical step to enable subsequent subsystem and system level demonstrations of an ultra-stable telescope.
To achieve the ambitious science goal of performing direct imaging of earth-like exoplanets with a high contrast coronagraph, future space-based astronomical telescopes will require wavefront stability several orders of magnitude beyond state-of-the-art. The Ultra-Stable Large Telescope Research and Analysis – Technology Maturation (ULTRA-TM) program is maturing key component-level technologies for this new regime of “ultra-stable optical systems” through hardware testbeds that demonstrate component performance in the desired picometer regime and with path-to-flight properties. This paper describes the initial results from these testbeds – which address key capabilities across the ultrastable architecture and include active components like segment edge sensors, actuators and thermal sensing and control hardware, as well as passive components like low distortion mirror mounts and stable composites for structures. These promising experimental results are the first steps in our team’s technical maturation plan to credibly enable a large, ultrastable telescope in space. The resulting component, sub-system and system roadmaps are meant to support planning for technology development efforts for future NASA missions.
To achieve the ambitious goal of directly imaging exo-Earths with a coronagraph, future space-based astronomical telescopes will require wavefront stability several orders of magnitude beyond state-of-the-art. The Ultra-Stable Large Telescope Research and Analysis – Technology Maturation (ULTRA-TM) program will mature critical technologies for this new regime of “ultra-stable optical systems” through component-level hardware demonstrations.
This paper describes the progress towards demonstrating performance of these technologies in the picometer regime and with flight-like properties – including active systems like segment sensing and actuation and thermal sensing and control, as well as passive systems like low distortion mirror mounts and composite structures. Raising the TRL of these technologies will address the most difficult parts of the stability problem with the longest lead times and provide significant risk reduction for their inclusion in future mission concepts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.