The Manfred Hirt Planet Spectrograph - formerly operated under the name FOCES - started its regular scientific observation program in fall 2019 at the 2m telescope of the Wendelstein Observatory, operated by the University Observatory of the LMU Munich. We present the first radial velocity stability measurements of an astronomical target, the 51 Pegasi b exoplanet system, utilizing our Astro Frequency Comb (ACF) for wavelength calibration. For computing RV shifts from orderwisely extracted Echelle spectra we have developed a new software pipeline. In this proceeding we will introduce the most important features of our pipeline: wavelength calibration with simultaneously recorded spectra of the AFC, generation of spectral templates, and an optional fit or cross- correlation function (CCF) for the calculation of the relative RV signals. Finally, the performance of the pipeline real data is demonstrated.
The Manfred Hirt Planet Spectrograph (MaHPS) — formerly also referred to as FOCES — is a high-resolution echelle spectrograph at the 2m telescope of the Wendelstein Observatory. One of its main scientific goals is the detection of planets at the few m/s level. To achieve such high precisions on a long-term scale, environmental stabilization of the instrument is required. The currently used temperature and pressure control systems are introduced and we present two different temperature control setups, with two and three actively controlled layers respectively. A series of measurements with an Astro Frequency Comb (AFC) as calibrator is shown to illustrate the system performance.
The Wendelstein 2 m Telescope has been in regular science operation since 2013. It is equipped with a three channel camera and an Echelle spectrograph called FOCES on one of it’s two Nasmyth foci. FOCES is a wavelength comb stabilized instrument which aims at <1m/s precision. High stability and repeatability of the entire system, including its fiber feed, are required and fast exchange times, between imaging mode and radial velocity measurement, is desirable. We are in the advanced implementation phase of an automated multifocal exchange system to allow for stable and fast exchange between the three different science instruments, a wavefront sensor and a calibration system. We present the final optical design and discuss the mechanical design choices we made in particular with respect to the limited design volume. We will conclude with presenting results from first tests on the system’s optomechanical stability.
FOCES is a highly stabilized high-resolution optical Échelle spectrograph operated with the 2m telescope at the Wendelstein Observatory. After an extensive temperature- and pressure-stabilization upgrade, reaching the m/s-level, we now focus on the wavelength calibration process. Due to our latest improvements, we are able to perform simultaneous wavelength calibration using our new 4-_ber-slit assembly. This allows us to couple the spectrum of a star and light from a ThAr/UNe hollow cathode lamp or our frequency comb_ at the same time into the spectrograph. We present the design, production process and performance of this new multi-fiber assembly and also evaluate the stability as a test for the upcoming high precision radial velocity measurements in search of exoplanets.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.