KEYWORDS: Inspection, Reticles, Line edge roughness, Signal to noise ratio, Sensors, Detection and tracking algorithms, Spatial frequencies, Modulation transfer functions, Image processing, Defect detection
The new TeraScanXR reticle inspection system extends the capability of the previous TeraScanHR platform to advanced
32nm logic and 40nm Half Pitch (HP) memory technology nodes. The TeraScanXR has been designed to provide a
significant improvement in image quality, defect sensitivity and throughput relative to the HR platform. Defect
sensitivity is increased via a combination of improved Die-to-Die (D:D) and Die-to-Database (D:DB) algorithms, as well
as enhancements to the image auto-focus (IAF). Modifications to system optics and the introduction of a more powerful
image processing computer have enabled a ~2X faster inspection mode. In this paper, we describe the key features of the
TeraScanXR platform and present preliminary data that illustrate the capability of this tool. TeraScanHR tools currently
at customer sites are field-upgradeable to the TeraScanXR configuration.
Back illuminated CCDs have been the detectors of choice for most astronomical imagers and spectrographs during the past decade. In recent years, we have developed processes to improve the performance of these detectors. Recent work has resulted in improved absolute quantum efficiency (QE), QE stability with temperature, QE stability with environmental contamination, and enhanced near-IR response. We demonstrate that QE near 100% can be achieved which is stable against hydrogen, dewar outgassing, and water contamination. We show that QE decrease with temperature can be eliminated for blue/visible optimized CCDs using a backside passivation layer, and significantly reduced for UV optimized CCDs which require very thin backside films. We also show that a 20% QE increase at 900 nm can be obtained by coating the frontside of back illuminated CCDs with a reflective metal film, without increasing interference fringing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.