The Space Development Agency (SDA) is developing a proliferated Low Earth Orbit (LEO) constellation of spacecraft. Spacecraft in this constellation will communicate with each other using optical intersatellite links. The US Naval Research Laboratory (NRL) has built and operated a laboratory testbed for investigating the interoperability of optical communication terminals in the SDA constellation. The challenges and design considerations of the testbed are discussed. The testbed’s different modes of operation, and some of the verification and validation that was done using NRL test terminals are described.
Increased capacity demands and radio frequency (RF) congestion impacts on current communication networks have brought greater attention to free-space optical (FSO) communication as a viable augmentation technology for terrestrial, aerial, and space-based communication infrastructure. As a complementary alternative to RF communication systems, FSO can support high link bandwidths and provide high data security without RF spectral constraints. The performance of FSO links, however, can be significantly impacted by receive power variation caused by propagation and scattering losses along with losses due to atmospheric turbulence. Depending on the FSO application, these loss mechanisms can dynamically change, impacting link performance at different time scales. We investigate subcarrier phase-shift keying (PSK) and quadrature amplitude modulation (QAM) intensity modulation that can be adapted to dynamically changing link conditions to optimize bandwidth utilization. Using custom subcarrier intensity modulation (SIM) modems, the performance of binary PSK (BPSK), QPSK, 8PSK, 16APSK, and 16-QAM waveforms is reported. The impact of adaptive equalization is also characterized, and the initial performance of a subcarrier multiplexed system is presented. This work represents the first experimental evaluation of SIM waveforms using a laboratory scintillation playback system based on scintillation recorded over real-world propagation paths.
As satellite constellations continue to expand and capacity demands grow, free-space optical (FSO) communication offers a complementary alternative to RF systems for low-Earth-orbit satellite communication networks. FSO systems can support higher link bandwidths and provide high data security without RF spectral constraints. The performance of FSO-LEO links, however, can be significantly impacted by receive power variation caused by propagation and scattering losses along with losses due to atmospheric turbulence. Here, we investigate intensity modulated, direct detection (IM/DD) digital waveforms that can be adapted to dynamically changing link conditions to optimize bandwidth utilization. Using a laboratory scintillation playback system, the performance of BPSK, QPSK, and 8PSK waveforms will be presented and compared to theoretical modelling. The impact of adaptive equalization will be characterized and initial performance of a multi-channel IM/DD architecture will be presented.
Communication in maritime environments presents unique challenges often requiring the secure transfer of information over long distances in a complex dynamic environment. Here a system for generating orbital angular momentum (OAM) beams, multiplexing, transmitting, and demultiplexing using a convolutional neural network (CNN) is presented. A single input from a 1550 nm seed laser is amplified, split into four separate beams that are directed and modulated by four switches, and the resulting beams directed into phase plates to create beams carrying OAM. These four beams constitute the individual channels. The beams are passed through several optical elements, coherently combined, and transmitted to a receiver at a range of 12 m. The resulting OAM beam spatial patterns are captured using a high speed short-wave infrared detector, concurrently transmitted to a workstation for storage, and processed in real-time using a trained CNN. Results from short range and quiescent environmental state show a pattern detection accuracy of <99%.
KEYWORDS: Sensors, Free space optics, Cameras, Prototyping, Short wave infrared radiation, Receivers, Acquisition tracking and pointing, Mirrors, Free space optical communications, Microelectromechanical systems
Free-space optical communication (FSO) enables high-bandwidth data links that are difficult to detect, intercept, and jam. In this paper we provide an overview of a small form factor FSO prototype intended for UAVs called OCELOT (Optical Communication Efficient Low-profile Terminal). NRL designed, developed, and tested an OCELOT prototype, and demonstrated a 1 Gbps duplex link 16 km across the Chesapeake Bay. We will discuss the design decisions and tradeoffs, highlighting the low-SWaP FSO technologies used in the prototype.
For low-Earth-orbit (LEO) satellite communication networks, free space optical (FSO) communication offers high data capacity and security without the spectrum limitations of more conventional RF approaches. However, receive signal power in FSO-LEO links can be highly variable based on multiple dynamic loss mechanisms occurring at different time scales. As a LEO pass moves from higher to lower elevation angles, propagation and scattering losses can vary by more than 10dB over a timescale of minutes. Separately, signal fading caused by atmospheric turbulence can also contribute greater than 10dB variation except at a much faster timescale on the order of milliseconds. Rather than implementing a modulation scheme based on the worst case link margin for a given FSO-LEO link, here we consider intensity modulated, direct detection (IM/DD) digital waveforms that can be dynamically adapted to the changing link conditions to provide increased bandwidth efficiency. In this work, we describe the development of IM/DD waveform modems and a waveform characterization test-bed which incorporates a scintillation playback system. BPSK, QPSK, 8PSK, and 16- QAM waveform performance will be presented under varying scintillation profiles.
In free space optical communication, photodetectors serve not only as communications receivers but as position sensitive detectors (PSD) for pointing, tracking, and stabilization. Typically, two separate detectors are utilized to perform these tasks but recent advances in the fabrication and development of large area, low noise avalanche photodiode (APD) arrays have enabled these devices to be used both as PSDs and as data communication receivers. This combined functionality allows for more flexibility and simplicity in optical assembly design without sacrificing the sensitivity and bandwidth performance of smaller, single element data receivers. This work presents a large area, five element concentric avalanche photodiode array rated for bandwidths beyond 1GHz with a measured carrier ionization ratio of approximately 0.2 at moderate APD gains. We discuss the integration of this array in a bi-static optical interrogator where it acts as a data receiver and provides position information for pointing and stabilization. In addition to front-end and digital electronics design, we also describe the optical assembly design and the development of a pointing and stabilization algorithm.
Free space optical communication uses photodetectors for two purposes: as communications receivers and, in the form of
a quadrant cell or a position sensitive detector, for tracking. Generally two separate detectors are used. In this work we
describe combining these functions into one device through the use of heterostructure avalanche photodiode (APD)
arrays. Combined functionality more efficiently uses the available light and allows for large area communications
detector arrays that maintain the bandwidth and sensitivity of smaller, single-element, devices. In this paper we describe
a prototype 2x2 arrays and associated electronics and processing. The design tradeoffs in balancing both functions are
explored and future geometries that are more effective than square arrays are described.
As military sensors and systems become more sophisticated, tactical situations will require reliable, high data rate
communications. The current RF communication systems are increasingly competing for the limited amount of RF
spectrum and bandwidth. One possible way to augment the current RF communication systems is by the use of free
space lasercomm in tactical networks for links in which direct line of sight is possible. Free space lasercomm has
been demonstrated over horizontal distances greater than 10 nautical miles and at data rates greater than 1
gigabit/sec. Lasercomm links do not require any RF frequency allocation, nor do they have an RF signature. They
are inherently low probability of intercept and detection and they are very difficult to jam due to the very narrow
divergence of the communication beams and the very narrow acceptance angle of the receivers.1-6 The U.S. Naval Research Laboratory has demonstrated the use of free space lasercomm in tactical networks at
Trident Spectre 2009 and Empire Challenge 2010. This paper will discuss these lasercomm demonstrations and
present packet error rate test data captured at both.
Free space optical (FSO) communication has enjoyed a renewal of interest in the past decade driven by
increasing data rate requirements and decreasing amounts of radio frequency spectrum. These needs exist in
both the commercial and military sectors. However military communications requirements differ in other
ways. At the U.S. Naval Research Laboratory (NRL) we have been conducting research on FSO
communications for over ten years with an emphasis on tactical applications. NRL's FSO research has
covered propagation studies in the maritime domain, new component development, and systems
demonstrations. In addition NRL has developed both conventional, direct, laser communications systems and
retro-reflecting systems. In this paper we review some of this work and discuss possible future applications of
FSO communications.
Small robots are finding increasing use for operations in areas that may be dangerous to humans.
These robots often have needs for high bandwidth communications to return video and other data.
While radio frequency (RF) links can be used in may cases, in some circumstances they may be
impractical due to frequency congestion, reflections off surfaces, jamming or other RF noise. In
these cases an optical link may be advantageous, particularly when a clear line of sight exists.
However, a conventional optical link has limitations for this application. For example, a
conventional optical link operating at rates of megabits per second at ranges of 1 Km requires
about a 1 degree pointing accuracy. This implies a need for active pointing and tracking, which
maybe be unacceptable for a small platform. We explored an optical modulating retroreflector
(MRR) link for these cases. An array of 6 MRRs and photodetectors with a field of view of 180 degrees (azimuth)x 30 degrees (elevation) was constructed and mounted a small robot, the iRobot
PackbotTM. An Ethernet modem designed to work with MRR links was also part of the system.
Using a tracking laser interrogator at the other end of the link, a 1.5 Mbps free space optical
Ethernet link was established that completely replaced the normal RF Ethernet link. The link was
demonstrated out to ranges of 1 Km down a road, exceeding the range of the RF link. Design
issues and measurements of performance will be described.
In free space optical communication systems, atmospheric turbulence makes it very difficult to focus transmitted laser
power onto small, low capacitance photodetectors. The obvious challenge, therefore, is to take advantage of larger area
photodiodes without sacrificing a great deal of bandwidth and sensitivity in the process. In this work, we report on a
high sensitivity, high speed adaptive avalanche photodetector array for free-space optical communication. The receiver
consists of a 2×2 InGaAs APD array with each 100um element in the array having its own dedicated trans-impedance
amplifier and buffering stage. The corresponding voltage outputs for each element are processed through a four channel
digital, fast switching and summation circuit. The resulting signal is selectable to be either that of the element in the
array with the greatest signal response or the sum of multiple or all channels. Design requirements, laboratory
sensitivity measurements, and field testing results are presented.
This paper presents the results of a successful bidirectional free-space optical link across 16 km to a modulated retroreflector array. The link was implemented at the Naval Research Laboratory's Chesapeake Bay Detachment laser test range. A 6-W cw 1550-nm class 1 M interrogation beam was used to illuminate an array of three modulated cat's-eye retroreflectors located on a tower across the Chesapeake Bay on Tilghman Island. The modulated retroreflectors had a diameter of 16 mm and were arranged in a triangular pattern with a spacing of 30 cm. The interrogating terminal employed a 100-µrad divergence and a high-speed pointing and tracking system to maintain link alignment. Link testing occurred over 12 days in the months of September, October, and November of 2006. Topics presented in this paper include the link scenario for the 16-km free-space optical link, the link budget, and terminal designs, as well as link acquisition and performance. Link performance results presented include data transmission throughput, scintillation data, and pointing and tracking results.
An experimental study has been made on the contribution to the effective scintillation index due to two retroreflectors, as a function of retroreflector spacing. For closely spaced retroreflectors the effect of coherent interference at the receiver is seen to increase the effective variance of the received signal, whereas spatial averaging is apparent for more widely spaced retroreflectors. The scintillation index, probability density functions, power spectral densities and fade rates are all affected by the interference.
The range, under which these experiments were conducted, was typically 500 - 800m over mixed water/land terrains. The interrogator used a monostatic, 1550nm laser probe beam with a divergence of 0.4 mrad and had a 50mm diameter receiver aperture. Data sets of received power were recorded for durations of 10s each, using a photodiode with a bandwidth of 100kHz. For comparison, the received power from a single retroreflector at various radial positions in the probe beam was recorded. Knowledge of the fade rates and fade durations is of practical importance in considerations regarding the optimal transmission of data packets.
NRL's Chesapeake Bay lasercom test facility (LCTF) offers a variety of ranges for researching free-space optical laser communication (FSO lasercom) links in a maritime environment. This paper discusses link performance over the 16 km one-way range at the LCTF. There are several methods to determine the link quality in FSO lasercom. Bit-error-rate (BER) testing and packet testing are two possible methods. Since errors generally tend to occur in bursts in FSO channels, packet testing may offer a better indication of the quality of service (QoS) rather than BER testing. Link performance measured via packet testing is being investigated in a variety of atmospheric conditions. Results of these experiments will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.