We describe a simple and new method to create hybrid bulk heterojunction solar cells consisting of ZnO and conjugated polymers. A gel-forming ZnO precursor, blended with conjugated polymers, is converted into crystalline ZnO at temperatures as low as 110 °C. In-situ formation of ZnO in MDMO-PPV leads to a quenching of the polymer photoluminescence. Positive charges on the MDMO-PPV are formed after photoexcitation, indicating electron transfer from the polymer to ZnO. Results without full optimization already give photovoltaic cells with an estimated performance over 1% under AM1.5 illumination. The large effect of the processing conditions on the photovoltaic effect of the solar cells, indicate that there are several parameters that require control. The choice of solvent, type of atmosphere, and the relative humidity during spin coating, are important for optimization of the photovoltaic effect. These solar cells are made from cheap materials, and via simple processing and can be regarded as promising for further research.
We describe the optimization of bulk heterojunction type photovoltaic devices from blends of ZnO nanoparticles and conjugated polymers. The photovoltaic effect of these devices depends on the choice of solvent, the amount of ZnO, and the thickness of the active blend layer. Optimized solar cells have an estimated AM1.5 performance of 1.6%. Incident photon to current conversion efficiencies (IPCE) show that up to 40% of the incident photons can be collected as charges. At high light intensities the performance of the cell drops, due to a decreasing fill factor (FF).
Transmyocardial Laser Revascularization (TMLR) is a new experimental method for relief of angina pectoris in patients with severe coronary artery disease. TMLR aims at revascularizing chronic hibernating myocardium by creating transmural channels. One of the working mechanism hypotheses is that the endocardial side of the channels remains open, enabling perfusion of the hibernating myocardium directly from the left ventricle. Although the working mechanism of TMLR is still unknown (perfusion through patent channels, induction of angiogenesis, relief of angina through destruction of sympatic innervation, others?), first clinical studies are successful. Currently, the Heart LaserTM and other CO2 lasers, XeCl Excimer laser and Ho:YAG laser are under investigation for TMLR. The initial attempts of TMR with needles were soon replaced by laser induced channels. Efforts were focused on developing a CO2 laser that could penetrate a beating heart during its relaxation phase. Later, the position of the beam could be fixed in the myocardial wall using lasers with fiber delivery systems and perforation was achieved within multiple cycles. Various researchers reported on both patent and non-patent channels after TMLR. Our belief is that the extent of laser induced thermal damage is one of the factors that determine the clinical outcome and the extent of angiogenesis (and, possibly, the patency of the channel). The purpose of this study is to present a simple theoretical model to predict the extent of thermal damage around a transmyocardial channel. In vitro experiments were performed on myocardial bovine tissue and damage was assessed. The results were used to determine the final parameters of the approximating theoretical equation. To evaluate our results, we compared our results to in vitro data using the Heart LaserTM from the literature. Ablation velocities were also measured and the results were compared to ablation velocity calculations using a model described by Ostegar et al.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.