The submicron-aperture fiber point-diffraction interferometer (SFPDI) can be applied to realize the measurement of
three-dimensional absolute displacement within large range, in which the performance of point-diffraction wavefront and
numerical iterative algorithm for displacement reconstruction determines the achievable measurement accuracy,
reliability and efficiency of the system. A method based on fast searching particle swarm optimization (FS-PSO)
algorithm is proposed to realize the rapid measurement of three-dimensional absolute displacement. Based on the SFPDI
with two submicron-aperture fiber pairs, FS-PSO method and the corresponding model of the SFPDI, the measurement
accuracy, reliability and efficiency of the SFPDI system are significantly improved, making it more feasible for practical
application. The effect of point-diffraction wavefront error on the measurement is analyzed. The error of pointdiffraction
wavefront obtained in the experiment is in the order of 1×10-4λ (the wavelength λ is 532 nm), and the
corresponding displacement measurement error is smaller than 0.03 μm. Both the numerical simulation and comparison
experiments have been carried out to demonstrate the accuracy and feasibility of the proposed SFPDI system, high
measurement accuracy in the order of 0.1 μm, convergence rate (~90.0%) and efficiency have been realized with the
proposed method, providing a feasible way to measure three-dimensional absolute displacement in the case of no guide
rail.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.