PANOSETI (Pulsed All-Sky Near-infrared Optical Search for Extra Terrestrial Intelligence) is a dedicated SETI (Search for Extraterrestrial Intelligence) observatory that is being designed to observe 4,441 sq. deg. to search for nano- to millisecond transient events. The experiment will have a dual observatory system that has a total of 90 identical optical 0.48 m telescopes that each have a 99 square degree field of view. The two observatory sites will be separated by 1 km distance to help eliminate false positives and register a definitive signal. We discuss the overall mechanical design of the telescope modules which includes a Fresnel lens housing, a shutter, three baffles, an 32x32 array of Hamamatsu Multi-Photon Pixel Counting (MPPC) detectors that reside on a linear stage for focusing. Each telescope module will be housed in a triangle of a 3rd tessellation frequency geodesic dome that has the ability to have directional adjustment to correct for manufacturing tolerances and astrometric alignment to the second observatory site. Each observatory will have an enclosure to protect the experiment, and an observatory room for operations and electronics. We will review the overall design of the geodesic domes and mechanical telescope attachments, as well as the overall cabling and observatory infrastructure layout.
The Panoramic SETI (Search for Extraterrestrial Intelligence) experiment (PANOSETI) aims to detect and quantify optical transients from nanosecond to second precision over a large field-of-view (∼4,450 square-degrees). To meet these challenging timing and wide-field requirements, the PANOSETI experiment will use two assemblies of ∼45 telescopes to reject spurious signals by coincidence detection, each one comprising custom-made fast photon-counting hardware combined with (f/1.32) focusing optics. Preliminary on-sky results from pairs of PANOSETI prototype telescopes (100 sq.deg.) are presented in terms of instrument performance and false alarm rates. We found that a separation of >1 km between telescopes surveying the same field-of-view significantly reduces the number of false positives due to nearby sources (e.g., Cherenkov showers) in comparison to a side- by-side configuration of telescopes. Design considerations on the all-sky PANOSETI instrument and expected field-of-views are reported.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.