This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Previously, we focused on the output performance of PEH. At PowerMEMS 2014 [1], we presented a high performance PEH based on PZT thin films fabricated with a homemade PZT deposition equipment on stainless steel substrates. We confirmed that the stainless steel based PEH can generate better output power than silicon based devices under the same vibration excitation levels, and also the stainless based PEH can have longer lifetime when excited at higher vibration levels due to better mechanical strength. In this study, we tried to further reinforce the PEH with a conductive adhesive tape sticking on the surface electrode near the clamping position. We investigated the change of failure mode and mechanical behaviors, including the frequency bandwidth and non-linearity of the piezoelectric energy harvester.
The PEH devices was mounted on a shaker for long time testing with vibration frequency set around 120Hz at 0.5g, 0.6g, and 0.7g acceleration vibration levels. The electrodes of the PEH device were cracked after 13 million cycles under 0.5g and 1 million cycles under 0.6g. The PEH has significant output power decreasing after the electrode is cracked and before being fully open circuit. The cracks of stainless steel substrate was also found after 1 million cycles under 0.7g vibration. For the device reinforced with conductive adhesive tape, we can see a steady output without degradation extended to more than 1.5 million cycles under 0.7g vibration. The other interesting finding in this study is with the added damping after adhering the conductive tape, the frequency bandwidth increased from 1.5Hz to 4Hz under 0.5g vibration level while the resonance frequency increased from 105Hz to 128Hz. Moreover, the reinforced devices have much better stability and linearity performance compared with the original devices. All the experimental details and discussion of the flexible conductive adhesive tape reinforced PEH will all be detailed in this paper.
View contact details
No SPIE Account? Create one