Static and scanned images of 100nm dense features for a developmental set of l/14 optics (projection optics box # 1, POB 1) in the Engineering Test Stand (ETS) were successfully obtained with various LPP source powers last year. The ETS with POB1 has been used to understand initial system performance and lithographic learning. Since then, numerous system upgrades have been made to improve ETS lithographic performance to meet or exceed the original design objectives. The most important upgrade is the replacement of POB 1 with an improved projection optics system, POB2, having lower figure error (l/20 rms wavefront error) and lower flare. Both projection optics boxes are a four-mirror design with a 0.1 numerical aperture. Scanned 70-nm dense features have been successfully printed using POB2. Aerial image contrast measurements have been made using the resist clearing method. The results are in good agreement to previous POB2 aerial image contrast measurements at the subfield exposure station (SES) at Lawrence Berkeley National Laboratory. For small features the results deviate from the modeling predictions due to the inherent resolution limit of the resist. The intrinsic flare of POB2 was also characterized. The experimental results were in excellent agreement with modeling predictions. As predicted, the flare in POB2 is less than 20% for 2μm features, which is two times lower than the flare in POB1. EUV flare is much easier to compensate for than its DUV counterpart due to its greater degree of uniformity and predictability. The lithographic learning obtained from the ETS will be used in the development of EUV High Volume Manufacturing tools. This paper describes the ETS tool ETS tool setup, both static and scanned, that was required after the installation of POB2. The paper will also describe the lithographic characterization of POB2 in the ETS and cmpare those results to the lithographic results obtained last year with POB1.
Full-field imaging with a developmental projection optic box (POB 1) was successfully demonstrated in the alpha tool Engineering Test Stand (ETS) last year. Since then, numerous improvements, including laser power for the laser-produced plasma (LPP) source, stages, sensors, and control system have been made. The LPP has been upgraded from the 40 W LPP cluster jet source used for initial demonstration of full-field imaging to a high-power (1500 W) LPP source with a liquid Xe spray jet. Scanned lithography at various laser drive powers of >500 W has been demonstrated with virtually identical lithographic performance.
Static and scanned images of 100 nm dense features were successfully obtained with a developmental set of projection optics and a 500W drive laser laser-produced-plasma (LPP) source in the Engineering Test Stand (ETS). The ETS, configured with POB1, has been used to understand system performance and acquire lithographic learning which will be used in the development of EUV high volume manufacturing tools. The printed static images for dense features below 100 nm with the improved LPP source are comparable to those obtained with the low power LPP source, while the exposure time was decreased by more than 30x. Image quality comparisons between the static and scanned images with the improved LPP source are also presented. Lithographic evaluation of the ETS includes flare and contrast measurements. By using a resist clearing method, the flare and aerial image contrast of POB1 have been measured, and the results have been compared to analytical calculations and computer simulations.
The EUV Engineering Test Stand (ETS) has demonstrated the printing of 100-nm-resolution scanned images. This milestone was first achieved while the ETS operated in an initial configuration using a low power laser and a developmental projection system, PO Box 1. The drive laser has ben upgraded to a single chain of the three-chain Nd:YAG laser developed by TRW. The result in exposure time is approximately 4 seconds for static exposures. One hundred nanometer dense features have been printed in step-and-scan operation with the same image quality obtained in static printing. These experiments are the first steps toward achieving operation using all three laser chains for a total drive laser power of 1500 watts. In a second major upgrade the developmental wafer stage platen, used to demonstrate initial full-field imaging, has been replaced with the final low-expansion platen made of Zerodur. Additional improvements in the hardware and control software have demonstrated combined x and jitter from 2 to 4 nm RMS Over most of the wafer stage travel range, while scanning at the design scan speed of 10 mm/s at the wafer. This value, less than half of the originally specified jitter, provides sufficient stability to support printing of 70 nm features as planned, when the upgraded projection system is installed. The third major upgrade will replace PO Box 1 with an improved projection system, PO Box 2, having lower figure error and lower flare. In addition to these upgrades, dose sensors at the reticle and wafer planes and an EUV- sensitive aerial image monitor have been integrated into the ETS. This paper reports on ETS system upgrades and the impact on system performance.
The Engineering Test Stand (ETS) is an 'alpha-class' Extreme Ultraviolet (EUV) lithography tool designed to demonstrate full-field EUV imaging and provide data required to accelerate production-tool development. The illumination system of the ETS is based on a laser-produced plasma (LPP) source using a recirculating Xe target medium. A Nd:YAG laser focused onto a Xe-gas or liquid target creates a plasma producing 13.4 nm radiation, at the center of the Si/Mo multilayer mirror passband. A condenser system, comprised of multilayer-coated and grazing incidence mirrors, collects the EUV radiation and directs it onto a reflecting reticle. A 1500 W LPP source has been integrated with the ETS and used for lithography. Two Xe spray sources have been evaluated, a cluster jet and a liquid spray jet. The cluster jet Xe source output rapidly degraded from heating of the hardware by the plasma causing the Xe clusters to be too small for efficient conversion. The TRW-designed liquid spray jet operates stably for hours and with tripled conversion efficiency into the condenser optics, producing EUV in the ETS.
The Engineering Test Stand (ETS) is an EUV lithography tool designed to demonstrate full-field EUV imaging and provide data required to accelerate production-tool development. Early lithographic results and progress on continuing functional upgrades are presented and discussed. In the ETS a source of 13.4 nm radiation is provided by a laser plasma source in which a Nd:YAG laser beam is focused onto a xenon- cluster target. A condenser system, comprised of multilayer-coated and grazing incidence mirrors, collects the EUV radiation and directs it onto a reflecting reticle. The resulting EUV illumination at the reticle and pupil has been measured and meets requirements for acquisition of first images. Tool setup experiments have been completed using a developmental projection system with (lambda) /14 wavefront error (WFE), while the assembly and alignment of the final projection system with (lambda) /24 WFE progresses in parallel. These experiments included identification of best focus at the central field point and characterization of imaging performance in static imaging mode. A small amount of astigmatism was observed and corrected in situ, as is routinely done in advanced optical lithographic tools. Pitch and roll corrections were made to achieve focus throughout the arc-shaped field of view. Scan parameters were identified by printing dense features with varying amounts of magnification and skew correction. Through-focus scanned imaging results, showing 100 nm isolated and dense features, will be presented. Phase 2 implementation goals for the ETS will also be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.