Active open-path FTIR sensors provide more sensitive detection of chemical agents than passive FTIRs, such as the M21 RSCAAL and JSLSCAD, and at the same time identify and quantify toxic industrial chemicals (TIC). Passive FTIRs are bistatic sensors relying on infrared sources of opportunity. Utilization of earth-based sources of opportunity limits the source temperatures available for passive chemical-agent FTIR sensors to 300° K. Active FTIR chemical-agent sensors utilize silicon carbide sources, which can be operated at 1500° K. The higher source temperature provides more than an 80-times increase in the infrared radiant flux emitted per unit area in the 7 to 14 micron spectral fingerprint region. Minimum detection limits are better than 5 μgm/m3 for GA, GB, GD, GF and VX. Active FTIR sensors can (1) assist first responders and emergency response teams in their assessment of and reaction to a terrorist threat, (2) provide information on the identification of the TIC present and their concentrations and (3) contribute to the understanding and prevention of debilitating disorders analogous to the Gulf War Syndrome for military and civilian personnel.
In July 1997 the Republic of Korea became the 15th country to exceed 10-million registered motor vehicles. The number of cars has been increasing exponentially in Korea for the past 12 years opening an era of one car per household in this nation with a population of 44 million. The air quality effects of the growth of increasingly congested motor vehicle traffic in Seoul, home to more than one-fourth of the entire population, is of great concern to Korea's National Institute of Environmental Research (NIER). AIL's Open-Path FTIR air quality monitor, RAM 2000TM, has been used to quantify the ozone increase over the course of a warm summer day. The RAM 2000 instrument was setup on the roof of the 6-story NIER headquarters. The retroreflector was sited 180-m away across a major highway where it was tripod-mounted on top of the 6- story Korean National Institute of Health facility. During the Open-Path FTIR data taking, NIER Air Physics Division research team periodically tethered an airborne balloon containing pump and a potassium iodide solution to obtain absolute ozone concentration results which indicated that the ambient ozone level was 50 ppb when the Open-Path FTIR measurements began. Total ozone concentrations exceeded 120 ppb for five hours between 11:30 AM and 4:30 PM. The peak ozone concentration measured was 199 ppb at 12:56 PM. The averaged concentration for five and a half hours of data collection was 145 ppb. Ammonia concentrations were also measured.
Passive FTIR remote sensing measurements were made to test real-time detection of an SF6 seeded stack plume using a probabilistic neural network (PNN) algorithm. The plume concentrations were determined using a classical least squares (CLS) algorithm and compared well with calculations using measured flow rates for the SF6 and the waste stream.
Remote monitoring of molecular species in the atmosphere is accomplished using a Fourier transform infrared (FTIR) spectrometer. Advanced processing algorithms utilized by AIL Systems include the classical least squares (CLS) technique as well as a more recently developed approach which combines digital finite impulse response filtering, adaptive sampling, and artificial neural networks (ANN) to improve detection sensitivity and estimation accuracy. This paper presents a comparison between the CLS and the ANN methods in estimating concentrations of multicomponent mixtures. Detection improvement of ANN over CLS has been demonstrated by examining SF6 in a stack plume and toluene in a laboratory experiment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.