The capability to detect optical signals over a broad wavelength band is highly important for practical device applications. However, high speed responsive across entire wavelength band within a single photodetector remains challenge. Here we demonstrated a broadband photodetector using a single quantum-dot-doped polyaniline nanowire with a broadband responsive at 350-700 nm (see schematic). The high responsivity is attributed to the high density of trapping states at the enormous interfaces formed in polyaniline and quantum dots. The interface trapping can effectively reduce the recombination rate, promote the separation of photogenerated carriers, and then enhance the efficiency for optical detection.
Polymer nanofibers are cheap and flexible building blocks for nanophotonic components. For high density nanophotonic integration, both passive and active polymer nanofibers are desirable. In contrast to passive polymer nanofibers, active polymer nanofibers are more desirable because they can act as a light source and waveguide simultaneously. In this talk, light emission in quantum dots and dyes doped polymer nanofibers will be introduced.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.