We fabricated an opto-mechano-fluidic microbubble resonator (MBR) consisting of a dielectric silica shell and liquid metal core. Benefiting from the conductivity of the liquid metal GaInSn, Ohmic heating was carried out for the MBR by applying current to the liquid metal to change the temperature of the MBR. Optical whispering gallery mode (WGM) and the optomechanical surface wave mode were tuned mainly because the Ohmic heating changed the refractive index and the Young's modulus of the silica, respectively. The optomechanical radial breathing mode was tuned mainly because the Ohmic heating changed the velocity and density of the liquid metal GaInSn. In our experiment, the WGM mode was tuned approximately 1.22 nm. The optomechanical surface wave mode and radial breathing mode were tuned approximately 0.30 MHz and 0.23 MHz, respectively.
We fabricated a polydimethylsiloxane (PDMS)-coated silica microbubble cavity with rich whispering gallery modes (WGMs). An electromagnetically induced transparency (EIT) window is realized through experimentally coupling a tapered fiber with the PDMS-coated microbubble resonator (MBR). There is a high-Q mode in the vicinity of a low-Q mode in transmission spectra. The experimental results prove that the high-Q mode performs a small redshift while the low-Q mode performs a large blueshift when the input power increases. This attributes to the negative thermo-optical coefficient (TOC) of PDMS and the positive TOC of silica. An EIT-like window is realized when these two modes are on-resonance with same frequency.
Raman lasing has been realized in different kinds of whispering gallery mode microresonators because of its high quality factors and relatively small mode volumes. The non-linear coefficient of carbon disulfide is much larger than that of silicon dioxide. In this paper, we fabricate a high quality factor silica microbubble resonator. In addition, we report on the realization of Raman lasing in an empty silica microbubble resonator. Moreover, Raman lasing in carbon disulfide filled optofluidic microbubble resonator at pump wavelengths of 950 nm is also implemented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.