A deflection angle detecting system (DADS) using a quadrant detector (QD) is developed to achieve the large deflection angle and high linearity for the fast steering mirror (FSM). The mathematical model of the DADS is established by analyzing the principle of position detecting and error characteristics of the QD. Based on this mathematical model, the method of optimizing deflection angle and linearity of FSM is demonstrated, which is proved feasible by simulation and experimental results. Finally, a QD-based FSM is designed and tested. The results show that it achieves 0.72% nonlinearity, ±2.0 deg deflection angle, and 1.11-μrad resolution. Therefore, the application of this method will be beneficial to design the FSM.
Taking a 1m aperture photoelectric theodolite as study object, its key components including four-way, turntable and base are structural optimized so as to improve structural rigidity while reducing structural mass. First, various components’ working characteristics and relationships with the other parts are studied, based on these, reasonable finite element model of these components are established, then each component’s optimal material topology are obtained by continuum topology optimization. According to structural topology, lightweight truss structure models are constructed and the models’ key parameters are optimized in size. Finally, the structures optimized are verified by finite element analysis. Analysis prove that comparing to traditional structure, lightweight structures of theodolite’s three key components can reduce mass up to 1095.2kg, and increase ratio of stiffness to mass. Meanwhile, for other indexes such as maximum stress, static deformation and first-order natural frequency, lightweight structures also have better performance than traditional structure. After alignment, angular shaking error of theodolite’s horizontal axis is tested by autocollimator, the results are: maximum error is υ =1.82″, mean square error is σ =0.62″. Further, angular shaking error of theodolite’s vertical axis is tested by 0.2″ gradienter, the results are: maximum error is υ =1.97″, mean square error is σ =0.706″. The results of all these analysis and tests fully prove that the optimized lightweight key components of this 1m aperture theodolite are reasonable and effective to satisfy this instrument’s requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.