Microfiber Bragg gratings (mFBGs) can be used as cost-effective and relatively simple-to-implement biosensors for monitoring DNA interactions in situ. The sensors are functionalized by a monolayer of poly-L-lysine (PLL) with the specific molecular recognition probe DNA sequences to bind with high specificity to a given target. By recording the wavelength seperation between the two resonant peaks of a single mFBG, the mFBG biosensor is capable of detecting the presence of specific target DNA in situ.
We demonstrate a highly-sensitive current sensor by packaging a single taper-based modal interferometer into a copper
tube that is filled with alcohol and surrounded with chrome-nickel wire. As the flowing current in the chrome-nickel wire
is changed, the interference spectrum varies accordingly with sensitivity as high as 1014.5 nm/A2 . Our results are
promising for the current sensing and the electric-tunable filtering.
High current sensitivity is obtained based on a microfiber that is wrapping around a chrome-nickel (CrNi) wire. Due to the strong heating effect of the CrNi wire with the flowing electric current, the mode index and the loop length of microfiber are changed, resulting in the shift of resonant wavelength. The measured current responsivity is as high as 220.65nm/A2, which is in two or three magnitude orders than the previously-obtained ones. We study the influence of component size to the structure performance, which is useful for future applications of current sensing or tuning devices.
A compact microfiber sensor is implemented with the twist of a continuous rectangular microfiber. The structure can exhibit extremely-high sensitivity of around 24,373nm per refractive-index unit and temperature stability of better than 0.005nm/oC, implying a great suppression of cross-sensitivity. Thia sensor is featured with compact size, high sensitivity, easy fabrication, robustness, and low connection loss with all-fiber system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.