GaAs is an important short-wave near-infrared photocathode material. In this paper, the first-principles plane wave pseudopotential method based on the density functional theory framework is used to study the influence mechanism of external electric field on the electronic structure of GaAs. Applying an electric field in different directions to GaAs shows that the (011) electric field direction has the strongest effect on opening the GaAs energy gap. Then, the electric fields of different strength are applied along the (011) direction. The results show that the energy gap of GaAs is 0.937eV when no electric field is applied. With increasing the electric field strength in the (011) direction, the energy gap of GaAs decreases gradually, when the electric field strength reaches 1eV/Å/e, the energy gap of GaAs is almost zero. Notice that in the conduction band region where the total density of state of GaAs gradually shifts to Fermi surface and the Span gradually decrease with increasing the electric field strength, while valence band is the opposite of the conduction band.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.