Low-dose computed tomography (CT) is desirable for treatment planning and simulation in radiation therapy. Multiple rescanning and replanning during the treatment course with a smaller amount of dose than a single conventional full-dose CT simulation is a crucial step in adaptive radiation therapy. We developed a machine learning-based method to improve image quality of low-dose CT for radiation therapy treatment simulation. We used a residual block concept and a self-attention strategy with a cycle-consistent adversarial network framework. A fully convolution neural network with residual blocks and attention gates (AGs) was used in the generator to enable end-to-end transformation. We have collected CT images from 30 patients treated with frameless brain stereotactic radiosurgery (SRS) for this study. These full-dose images were used to generate projection data, which were then added with noise to simulate the low-mAs scanning scenario. Low-dose CT images were reconstructed from this noise-contaminated projection data and were fed into our network along with the original full-dose CT images for training. The performance of our network was evaluated by quantitatively comparing the high-quality CT images generated by our method with the original full-dose images. When mAs is reduced to 0.5% of the original CT scan, the mean square error of the CT images obtained by our method is ∼1.6 % , with respect to the original full-dose images. The proposed method successfully improved the noise, contract-to-noise ratio, and nonuniformity level to be close to those of full-dose CT images and outperforms a state-of-the-art iterative reconstruction method. Dosimetric studies show that the average differences of dose-volume histogram metrics are <0.1 Gy (
View contact details