As an important factor for global climate change, snow affects local and global radiative balances of the earth. Excessive snow can cause destroy for global hydrological cycle and climate system. In recent years, the use of passive microwave remote sensing to retrieval snow has made greatly progress. Snow deep retrieval algorithms and snow-covered products can provide spatial and temporal information on snow cover distribution, which is an important data source for snow monitoring. The accuracy validation and contrastive analysis of snow deep retrieval algorithms are helpful to further development of snow retrieval in China. Northern Xinjiang, Qinghai-Tibet Plateau and Inner Mongolia-Northeast China are stable snow areas in China. Relying on the survey project of snow cover characteristics and distribution in China, the snow survey route has been carefully designed to continuously observe whole dry snow period (December 2017 to March). FengYun3B microwave radiation imager (FY3B-MWRI) brightness temperature data and MODIS land cover product data are used in this paper. The accuracy of snow depth retrieval algorithms, including FY operational algorithm, NASA series algorithm and GlobSnow snow water equivalent product algorithm, shows that the FY operational algorithm has the best result, and the root mean square error and deviation are 8.91cm, 6.4cm, respectively. However, the accuracy of NASA series algorithms and GlobSnow snow water equivalent product algorithm is seriously influenced by land cover type.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.