Luminescent coupling effects are considered crucial for the performance of multijunction solar cells. We report a novel approach based on small signal measurement, which can directly measure the luminescent coupling efficiency of a multijunction solar cell with different voltage bias. In addition, this method demonstrated the light and voltage dependence of the coupling efficiency, and can potentially lead to a deeper understanding of luminescent coupling effects as well as more effective design of multijunction solar cells.
For solar cells composed of direct bandgap semiconductors such as GaAs, the performance can be significantly improved by utilizing photon recycling and luminescence coupling effects. Accurate modeling with those effects may offer insightful guidance in designing such devices. Previous research has demonstrated different numerical models on photon recycling and luminescent coupling. However, most of those works are based on complicated theoretical derivation and idealized assumptions, which made them hard to implement. In addition, very few works provide method to model both photon recycling and luminescent coupling effects. In this paper, we demonstrate an easy-to-implement but accurate numerical model to simulate those effects in multijunction solar cells. Our numerical model can be incorporated into commonly used equivalent circuit model with high accuracy. The simulation results were compared with experimental data and exhibit good consistency. Our numerical simulation is based on a self-consistent optical-electrical model that includes non-ideal losses in both the single junction and the tandem device. Based on the numerical analysis, we modified the two-diode circuit model by introducing additional current-control-current sources to represent the effects of both photon recycling and luminescence coupling. The effects of photon recycling on the diode equation have been investigated based on detailed-balanced model, accounting for internal optical losses. We also showed the practical limit of performance enhancement of photon recycling and luminescent coupling effects. This work will potentially facilitate the accurate simulation of solar cell with non-ideal effects, and provide more efficient tools for multijunction solar cell design and optimization.
KEYWORDS: Thin film solar cells, Thin films, Solar cells, Oxides, Titanium, Crystals, Silicon solar cells, Silicon, Energy conversion efficiency, Oxygen, Atomic layer deposition
In crystalline silicon (c-Si) solar cells, carrier selective contacts are among the remaining issues to be addressed in order to reach the theoretical efficiency limit. Especially in ultra-thin-film c-Si solar cells with small volumes and higher carrier concentrations, contact recombination is more critical to the overall performance. In this paper, the advantages of using TiOX as electron-selective layers for contact passivation in c-Si solar cells are analyzed. We characterize the metal/TiOX/n-Si electron-selective contact with the contact recombination factor J0c and the contact resistivity ρc for the first time. Experimental results show that both J0c and ρc decrease after the insertion of TiOX. In addition, the effect of post-deposition rapid-thermal-annealing (RTA) at different temperatures is also evaluated. The best J0c of 5.5 pA/cm2 and the lowest ρc of 13.6 mΩ·cm2 are achieved after the RTA process. This work reveals the potential of TiOX as an electron-selective layer for contact passivation to enable high-efficiency ultra-thin c-Si solar cells with a low cost.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.